The Development of Zeolite as Potential Natural Catalyst

Perkembangan Zeolit Sebagai Katalis Alam Potensial

Authors

  • Junita Dongoran Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Palangka Raya
  • Putri Sulistiawati Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Palangka Raya
  • Sri Yulandari Simangunsong Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Palangka Raya
  • Pandu Gizta Rapi Paksi Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Palangka Raya
  • Marvin Horale Pasaribu Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Palangka Raya

DOI:

https://doi.org/10.36873/jjms.2021.v3.i2.604

Keywords:

zeolite, catalyst, synthesis, modification

Abstract

Zeolite is a hydrated aluminosilicate mineral (solid) in which silicate ions (SiO44-) and tetrahedral alumina (AlO45-) combine to form a porous/hollow and negatively charged crystal structure. Natural zeolite can be isolated from several sources, such as volcanic ash, sand, rocks, and rice husks, to industrial organic waste. Zeolite catalysts can be synthesized through various methods such as sol-gel, hydrothermal, ionothermal, and alkaline fusion. The purpose of modifying zeolite catalyst material is to improve its catalytic capabilities and physical and chemical properties, which can be done by various methods, including sol-gel, hydrothermal, ionothermal, and alkaline fusion. The use of zeolite-based catalysts and their derivatives has been widely used in various chemical reactions and industries such as isomerization processes, molecular cracking, to the manufacture of biodiesel. The conclusion is that zeolite is a widely developed material because of its abundant quantity in nature, and it is relatively cheaper and can be modified so that it can be used in various chemical reactions.

Downloads

Download data is not yet available.

References

I. Aziz, S. Nurbayti, and A. Rahman, “Penggunaan Zeolit Alam sebagai Katalis dalam Pembuatan Biodiesel,” J. Kim. Val., vol. 2, no. 4, 2012, doi: 10.15408/jkv.v2i4.268.

A. T. Saputra, M. A. Wicaksono, and I. Irsan, “Pemanfaatan Minyak Goreng Bekas untuk Pembuatan Biodiesel Menggunakan Katalis Zeolit Alat Teraktivasi,” J. Chemurg., vol. 1, no. 2, p. 1, 2018, doi: 10.30872/cmg.v1i2.1138.

A. Khaleque et al., “Zeolite synthesis from low-cost materials and environmental applications: A review,” Environ. Adv., vol. 2, no. October, 2020, doi: 10.1016/j.envadv.2020.100019.

Setiadi, D. Yanes, and F. R. Melisa, “Pemanfaatan Zeolit Alam sebagai Komponen Penyangga Katalis untuk Reaksi Setiadi , Yanes Darmawan , R . Melisa Fitria Departemen Teknik Kimia , Fakultas Teknik , Universitas Indonesia Reaksi Hidrogenasi CO 2 Salah satu alternatif pemanfaatan CO 2 saat ini,” vol. 6, no. 1, pp. 24–31, 2018.

A. Awaluddin, ’ S., S. Nelvia, and ’ W., “Faktor-Faktor yang Mempengaruhi Produksi Biodiesel dari Minyak Sawit Mentah Menggunakan Katalis Padat Kalsium Karbonat yang Dipijarkan,” J. Natur Indones., vol. 11, no. 2, p. 129, 2012, doi: 10.31258/jnat.11.2.129-134.

R. I. Kusuma, J. P. Hadinoto, A. Ayucitra, F. E. Soetaredjo, and S. Ismadji, “Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil,” Appl. Clay Sci., vol. 74, pp. 121–126, 2013, doi: 10.1016/j.clay.2012.04.021.

R. N. Yanti, E. Hambali, G. Pari, and A. Suryani, “Analisis Karakteristik Fungsi Zeolit Alam Aktif Sebagai Katalis Setelah Diimpregnasi Logam Nikel,” J. Penelit. Has. Hutan, vol. 39, no. 3, pp. 138–147, 2021, doi: 10.20886/jphh.2021.39.3.138-147.

E. Catizzone, M. Migliori, A. Aloise, R. Lamberti, and G. Giordano, “Hierarchical low si/al ratio ferrierite zeolite by sequential postsynthesis treatment: Catalytic assessment in dehydration reaction of methanol,” J. Chem., vol. 2019, 2019, doi: 10.1155/2019/3084356.

W. Patcharin, K. Sriamporn, and A. Kanokkan, “Utilization biomass from bagasse ash for phillipsite zeolite synthesis,” Adv. Mater. Res., vol. 383–390, pp. 4038–4042, 2012, doi: 10.4028/www.scientific.net/AMR.383-390.4038.

A. N. Rahbari, Z.V., Khosravan, M., Kharat, “Dealumination of mordenite zeolite and its catalytic performance evaluation in,” Bull. Chem. Soc. Ethiop, vol. 31, no. 2, pp. 281–289, 2017.

S. N. Azizi and M. Yousefpour, “Isomorphous substitution of iron and nickel into analcime zeolite,” Zeitschrift fur Anorg. und Allg. Chemie, vol. 637, no. 6, pp. 759–765, 2011, doi: 10.1002/zaac.201100059.

E. Estrada-Cabrera, L. R. Torres-Ferrer, G. Luna-Barcenas, and R. Ramirez-Bon, “Cellulose dialysis membrane containing raw clinoptilolite enhances the removal of Rhodamine 6G from aqueous solutions,” Microporous Mesoporous Mater., vol. 321, no. February, p. 111113, 2021, doi: 10.1016/j.micromeso.2021.111113.

J. R. Di Iorio and R. Gounder, “Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents,” Chem. Mater., vol. 28, no. 7, pp. 2236–2247, 2016, doi: 10.1021/acs.chemmater.6b00181.

H. Ye et al., “Millettia pachycarpa exhibits anti-inflammatory activity through the suppression of LPS-induced NO/iNOS expression,” Am. J. Chin. Med., vol. 42, no. 4, pp. 949–965, 2014, doi: 10.1142/S0192415X14500608.

N. Mansouri, N. Rikhtegar, H. Ahmad Panahi, F. Atabi, and B. K. Shahraki, “Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent,” Environ. Prot. Eng., vol. 39, no. 1, pp. 139–152, 2013, doi: 10.5277/EPE130111.

Darmansyah, S. B. Ginting, D. A. Iryani, R. P. Sari, and D. Supriyadi, “ Characterization of Modified Lampung Natural Zeolite with Cetyl Trimethyl Ammonium Bromide (CTAB) for Adsorption Industrial Tapioca Wastewater ,” Proc. Int. Conf. Sustain. Biomass (ICSB 2019), vol. 202, no. Icsb 2019, pp. 230–235, 2021, doi: 10.2991/aer.k.210603.041.

I. Petrov and T. Michalev, “Synthesis of Zeolite A: A Review,” Scientific Works Of The University Of Ruse (Proceedings - Chem. Technol., no. 51, Book 9.1, pp. 30–35, 2012, [Online]. Available: http://conf.uni-ruse.bg/bg/docs/cp12/9.1/9.1-5.pdf.

M. Tsujiguchi, T. Kobashi, M. Oki, Y. Utsumi, N. Kakimori, and A. Nakahira, “Synthesis and characterization of zeolite A from crushed particles of aluminoborosilicate glass used in LCD panels,” J. Asian Ceram. Soc., vol. 2, no. 1, pp. 27–32, 2014, doi: 10.1016/j.jascer.2013.12.005.

Y. Ma, C. Yan, A. Alshameri, X. Qiu, C. Zhou, and D. Li, “Synthesis and characterization of 13X zeolite from low-grade natural kaolin,” Adv. Powder Technol., vol. 25, no. 2, pp. 495–499, 2014, doi: 10.1016/j.apt.2013.08.002.

J. C. Kim et al., “Synthesis of uniform-sized zeolite from windshield waste,” Mater. Chem. Phys., vol. 166, pp. 20–25, 2015, doi: 10.1016/j.matchemphys.2015.09.028.

A. K. Jamil, O. Muraza, and A. M. Al-Amer, “Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths,” Particuology, vol. 24, pp. 138–141, 2016, doi: 10.1016/j.partic.2015.09.002.

L. Huang et al., “Hierarchical ZSM-5 zeolite synthesized by an ultrasound-assisted method as a long-life catalyst for dehydration of glycerol to acrolein,” Ind. Eng. Chem. Res., vol. 55, no. 27, pp. 7318–7327, 2016, doi: 10.1021/acs.iecr.6b01140.

K. Bunmai et al., “Extraction of silica from cogon grass and utilization for synthesis of zeolite NaY by conventional and microwave-assisted hydrothermal methods,” J. Taiwan Inst. Chem. Eng., vol. 83, pp. 152–158, 2018, doi: 10.1016/j.jtice.2017.11.024.

M. G. Lee, J. W. Park, S. K. Kam, and C. H. Lee, “Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method,” Chemosphere, vol. 207, pp. 203–208, 2018, doi: 10.1016/j.chemosphere.2018.05.080.

A. Erlynata, S. Amalia, T. K. Adi, and S. N. Khalifah, “Pemanfaatan zeolit alam, h-zeolit alam dan ti-h-zeolit alam malang sebagai katalis reaksi isomerisasi glukosa,” Alchemy, vol. 3, no. 1, 2014, doi: 10.18860/al.v0i0.2898.

N. O. Erlina, S. Amalia, and S. N. Khalifah, “Preparasi, modifikasi dan karakterisasi katalis bifungsional sn-h-zeolit alam malang,” Alchemy, vol. 2, no. 3, 2013, doi: 10.18860/al.v0i0.2888.

M. Yuniwati and A. A. Karim, “Kinetika Reaksi Pembuatan Biodiesel dari Minyak Goreng Bekas (Jelantah) dan Metanol dengan Katalisator KOH,” J. Teknol., vol. 2 (2), pp. 130–136, 2009.

R. I. Kusuma, J. Hadinoto, A. Ayucitra, and S. Ismadji, “Pemanfaatan zeolit alam sebagai katalis murah dalam proses pembuatan biodiesel dari minyak kelapa sawit,” Semin. Nas. Fundam. dan Apl. Tek. Kim. 2011, pp. 1–8, 2012.

S. Ulfayana, S. Bahri, and Z. Helwani, “Pemanfaatan zeolit alam sebagai katalis pada tahap transesterifikasi pembuatan biodiesel dari sawit off grade,” Jom FTEKNIK, vol. 1, no. 2, pp. 1–12, 2014.

R. A. Fauzi, “Modifikasi katalis berbasis hierarchical zeolite untuk reaksi esterifikasi dalam pembuatan surfaktan berbasis gliserol,” pp. 1–74, 2019.

S. Oruji, R. Khoshbin, and R. Karimzadeh, “Combination of precipitation and ultrasound irradiation methods for preparation of lanthanum-modified Y zeolite nano-catalysts used in catalytic cracking of bulky hydrocarbons,” Mater. Chem. Phys., vol. 230, no. March, pp. 131–144, 2019, doi: 10.1016/j.matchemphys.2019.03.038.

N. Haryani, H. Harahap, Taslim, and Irvan, “Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 801, no. 1, pp. 0–10, 2020, doi: 10.1088/1757-899X/801/1/012051.

R. Nagarjuna, S. Roy, and R. Ganesan, “Polymerizable sol-gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue,” Microporous Mesoporous Mater., vol. 211, pp. 1–8, 2015, doi: 10.1016/j.micromeso.2015.02.044.

F. Mudhofir, I. Yulianti1, and Sujarwata, “Modifikasi Zeolit Alam dan Uji Aktivitas Katalitiknya pada Reaksi Asetilasi 1,3- Dihidroksibenzena A,” J. MIPA, vol. 41, no. 1, pp. 1–5, 2018, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/JM/article/view/15813.

M. Ozekmekci, G. Salkic, and M. F. Fellah, “Use of zeolites for the removal of H2S: A mini-review,” Fuel Process. Technol., vol. 139, pp. 49–60, 2015, doi: 10.1016/j.fuproc.2015.08.015.

B.-H. Chen et al., “Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition–precipitation method,” Dalt. Trans., vol. 45, no. 6, pp. 2720–2739, 2016, doi: 10.1039/C4DT00399C.

E. Jwa, S. B. Lee, H. W. Lee, and Y. S. Mok, “Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts,” Fuel Process. Technol., vol. 108, pp. 89–93, 2013, doi: 10.1016/j.fuproc.2012.03.008.

A. Komariah, S. Sriatun, and P. Pardoyo, “Adsorpsi Alkil Benzena Sulfonat Menggunakan Zeolit Termodifikasi Cetyltrimethylammonium,” J. Kim. Sains dan Apl., vol. 20, no. 1, pp. 13–18, 2017, doi: 10.14710/jksa.20.1.13-18.

K. Aprillia, “Digital Digital Repository Repository Universitas Universitas Jember Jember Digital Digital Repository Repository Universitas Universitas Jember Jember,” pp. 1–45, 2016.

S. F. Anis and R. Hashaikeh, “Electrospun zeolite-Y fibers: Fabrication and morphology analysis,” Microporous Mesoporous Mater., vol. 233, pp. 78–86, 2016, doi: 10.1016/j.micromeso.2015.11.022.

D. Anwaristiawan and N. Widiarti, “Modifikasi Katalis BaO/Zeolit Y pada Reaksi Transesterifikasi Minyak Biji Jarak (Jatropha Curcas L.) menjadi Biodiesel,” Indones. J. Chem. Sci., vol. 7, no. 3, pp. 292–298, 2018.

U. A. Al-Rawi et al., “Catalytic activity of Pt loaded zeolites for hydroisomerization of n‑hexane using supercritical CO2,” Ind. Eng. Chem. Res., vol. 59, no. 51, pp. 22092–22106, 2020, doi: 10.1021/acs.iecr.0c05184.

T. Odedairo and S. Al-Khattaf, “Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length: H-ZSM-5 versus mordenite,” Catal. Today, vol. 204, pp. 73–84, 2013, doi: 10.1016/j.cattod.2012.05.052.

E. Buzetzki, K. Sidorová, Z. Cvengrošová, A. Kaszonyi, and J. Cvengroš, “The influence of zeolite catalysts on the products of rapeseed oil cracking,” Fuel Process. Technol., vol. 92, no. 8, pp. 1623–1631, 2011, doi: 10.1016/j.fuproc.2011.04.009.

X. Mu, D. Wang, Y. Wang, M. Lin, S. Cheng, and X. Shu, “Nanosized molecular sieves as petroleum refining and petrochemical catalysts,” Cuihua Xuebao/Chinese J. Catal., vol. 34, no. 1, pp. 69–79, 2013, doi: 10.1016/s1872-2067(11)60462-2.

N. Musyoka and L. Petrik, “Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production,” 2012.

R. Tambun, R. P. Saptawaldi, M. A. Nasution, and O. N. Gusti, “Pembuatan Biofuel dari Palm Stearin dengan Proses Perengkahan Katalitik Menggunakan Katalis ZSM-5,” J. Rekayasa Kim. Lingkung., vol. 11, no. 1, pp. 46–52, Jun. 2016, doi: 10.23955/rkl.v11i1.4902.

Y. K. Vyawahare, V. R. Chumbhale, and A. S. Aswar, “Alkylation of benzene to cumene over mor zeolite catalysts,” Rev. Roum. Chim., vol. 57, no. 2, pp. 107–113, 2012.

K. P. De Jong et al., “Zeolite y crystals with trimodal porosity as ideal hydrocracking catalysts,” Angew. Chemie - Int. Ed., vol. 49, no. 52, pp. 10074–10078, 2010, doi: 10.1002/anie.201004360.

G. S. V. Martins, E. R. F. dos Santos, M. G. F. Rodrigues, G. Pecchi, C. M. N. Yoshioka, and D. Cardoso, “N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite,” Mod. Res. Catal., vol. 02, no. 04, pp. 119–126, 2013, doi: 10.4236/mrc.2013.24017.

Y. Liu et al., “Improved para-Xylene Selectivity in meta-Xylene Isomerization Over ZSM-5 Crystals with Relatively Long b-Axis Length,” ChemCatChem, vol. 5, no. 6, pp. 1517–1523, 2013, doi: 10.1002/cctc.201200691.

Published

2021-12-15

How to Cite

[1]
J. . Dongoran, P. . Sulistiawati, S. Y. . Simangunsong, P. G. R. . Paksi, and M. H. . Pasaribu, “The Development of Zeolite as Potential Natural Catalyst : Perkembangan Zeolit Sebagai Katalis Alam Potensial”, JJMS, vol. 3, no. 2, pp. 28–39, Dec. 2021.