# KARAKTERISTIK SISTEM HYBRID PLTS DAN TURBIN ANGIN HAWT SEBAGAI PEMBANGKIT LISTRIK

Harie Setiyadi Jaya<sup>1\*</sup>, Petrisly Perkasa<sup>2</sup>, Untung Darung<sup>3</sup>, Sukardi<sup>4</sup>, Muhammad Hudan Rahmat<sup>5</sup>

1,4,5 Program Studi Pendidikan Teknik Mesin, Universitas Palangka Raya
2 Program Studi Pendidikan Teknik Bangunan, Universitas Palangka Raya
3 Jurusan Budidaya Pertanian, Universitas Palangka Raya
\* Email: harvsativadi@gmail.com

Abstrak: Krisis energi di wilayah pesisir Kalimantan Tengah menuntut solusi pembangkit listrik yang mandiri, andal, dan mudah dipindahkan. Penelitian ini bertujuan untuk mengembangkan dan menguji kinerja Prototipe Pembangkit Listrik Tenaga Hibrida (PLTH) portabel yang mengkombinasikan panel surya dan turbin angin sumbu horizontal/ Horizontal Axis Wind Turbin (HAWT). Metode yang digunakan adalah penelitian eksperimental, meliputi perancangan, fabrikasi, dan pengujian kinerja prototipe secara langsung di lapangan. Pengukuran output tegangan dilakukan pada kedua sumber energi untuk memvalidasi performa sistem dalam kondisi cuaca yang bervariasi. Hasil pengujian menunjukkan prototipe berhasil beroperasi secara efektif, di mana panel surya menghasilkan tegangan puncak 20V pada cuaca cerah dan turbin angin mencapai 24V pada kecepatan 360 rpm. Keberhasilan integrasi kedua sumber ini membuktikan keunggulan sistem hibrida yang saling melengkapi, sekaligus menawarkan solusi energi portabel yang aplikatif untuk daerah terpencil.

Kata Kunci: PLTS, PLTB, Blade, HAWT

Abstract: The energy crisis in the coastal areas of Central Kalimantan demands a power generation solution that is independent, reliable, and easily transported. This study aims to develop and test the performance of a portable Hybrid Power Plant (PLTH) prototype that combines solar panels and a Horizontal Axis Wind Turbine (HAWT). The method used is experimental research, including the design, fabrication, and performance testing of the prototype directly in the field. Voltage output measurements were carried out on both energy sources to validate the system's performance under varying weather conditions. The test results show that the prototype successfully operates effectively, where the solar panels produce a peak voltage of 20V in sunny weather and the wind turbine reaches 24V at a speed of 360 rpm. The successful integration of these two sources proves the advantages of a complementary hybrid system, while offering a portable energy solution applicable to remote areas.

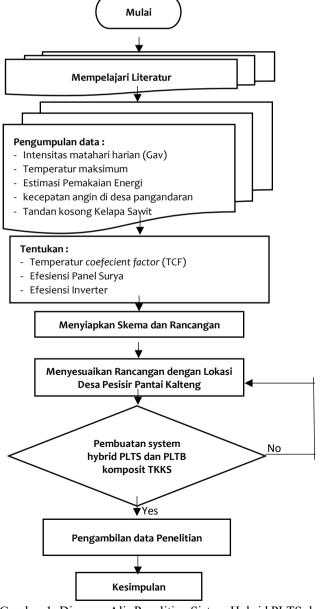
Keywords: PLTS, PLTB, Blade, HAWT

# PENDAHULUAN

Di Indonesia, kesenjangan pasokan listrik masih menjadi isu signifikan di luar sistem interkoneksi utama. Meskipun Rasio Elektrifikasi nasional pada akhir 2017 telah mencapai 94,91% (Kementerian Energi dan Sumber Daya Mineral (ESDM, 2018). Pemerataan akses di berbagai provinsi masih menjadi tantangan. Kondisi ini sangat terasa di Provinsi Kalimantan Tengah. Hingga Maret 2023, dilaporkan masih terdapat 442 desa yang belum teraliri listrik dari jaringan PLN (Radio Republik Indonesia, 2023). Dengan total 1.571 desa, Rasio Elektrifikasi Desa di provinsi tersebut baru mencapai 71,87%, yang berarti lebih dari 28% desa belum mendapatkan akses listrik dari PLN.

Hal ini merupakan kondisi yang sangat memprihatinkan bagi masyarakat Kalimantan Tengah yang berada di desa terpencil dan akses jalan yang kurang baik, mengingat Kalimantan Tengah merupakan wilayah yang banyak beroperasi perusahaan-perusahaan tambang dan Perusahaan Besar Kelapa Sawit. Diantara 463 desa tersebut, ada sejumlah desa yang berada di pesisir laut yang memiliki sumber energi berupa energi angin disamping energi matahari. Contohnya Desa Cemantan, Hambawang, Sei Bakau dan Kiapak yang berada di kabupaten Pulang Pisau. Berdasarkan data dari BMKG Kalimantan Tengah bulan Maret 2024 kecepatan angin yang ada di Desa Cemantan Selatan Barat Daya (SBD) 7 km/jam dan angin kencang 22 km/jam.

Sampai saat ini, ke empat desa tersebut masih belum terjangkau listrik PLN. Terdapat beberapa penyebab empat desa tersebut masih belum terjangkau jaringan listrik. Di antaranya letak geografis dan akses jalan yang jadi bahan pertimbangan dalam perluasan jaringan. Masyarakat hanya menggunakan generator listrik berbahan bakar bensin atau solar. Untuk mengatasi ketergantungan pada generator diesel yang mahal dan tidak praktis, penelitian ini mengajukan kebaruan berupa model sistem hibrida PLTS-PLTB portabel yang dirancang khusus untuk merespons kondisi geografis dan sumber energi


(angin dan surya) di wilayah pesisir Kalimantan Tengah. Fokusnya adalah menciptakan solusi energi yang tidak hanya mandiri dan efisien, tetapi juga fleksibel untuk dipindahkan sesuai kebutuhan.

Penelitian ini bertujuan untuk mengembangkan dan menguji kinerja prototipe pembangkit listrik tenaga hibrida (PLTH) portabel yang dioptimalkan untuk kondisi geografis dan sumber daya di Kalimantan Tengah. Salah satu tantangan utama dalam perancangan ini adalah karakteristik energi angin lokal yang berada dalam klasifikasi kecepatan rendah. Oleh karena itu, pemilihan teknologi turbin menjadi langkah krusial. Berdasarkan arah sumbu geraknya, turbin angin sumbu horizontal (HAWT) dipilih karena memiliki keunggulan efisiensi pada wilayah dengan kondisi kecepatan angin rendah, di mana sumbu putar rotor yang searah dengan arah angin mampu menangkap energi secara lebih efektif (Nakhoda & Saleh, 2020).

### **METODE**

Penelitian menerapkan metode eksperimental dengan pendekatan rekayasa dan pengembangan prototipe, yang dilaksanakan di Laboratorium Pendidikan Teknik Mesin, Universitas Palangka Raya. Proses diawali dengan tahap perancangan, di mana geometri sudu turbin ditentukan berdasarkan data kecepatan angin primer dari lokasi pesisir dan divalidasi kelayakan aerodinamisnya melalui simulasi menggunakan perangkat *OBlade*.

Tahapan penelitian disajikan pada diagram alur Gambar 1.



Gambar 1. Diagram Alir Penelitian Sistem Hybrid PLTS dan PLTB

Adapun beberapa variabel yang ditentukan dalam langkah awal perancangan geometri bilah turbin angin adalah Daya Rencana ( $P_e$ ), Kecepatan Angin Perancangan ( $V_D$ ), Tip Speed Ratio ( $\lambda$ ), Jumlah blade (B), Efesiensi Blade (Cp) dan Densitas Udara ( $\rho_{air}$ ). Berdasarkan desain yang tervalidasi, dilakukan fabrikasi prototipe sistem hibrida portabel, dengan inovasi utama pada pembuatan sudu dari komposit serat tandan kosong kelapa sawit.

Teknik pengumpulan data dilakukan melalui pengujian eksperimental terhadap sampel, yaitu satu unit prototipe jadi. Kinerja sistem diukur secara kuantitatif menggunakan instrumen terkalibrasi seperti multimeter (untuk tegangan dan arus) dan tachometer (untuk kecepatan putar) dalam kondisi laboratorium yang terkontrol. Analisis data dilakukan secara deskriptif kuantitatif untuk mengevaluasi hubungan antara kondisi input (aliran angin dan intensitas cahaya) dengan output daya listrik, guna memvalidasi performa prototipe secara empiris.

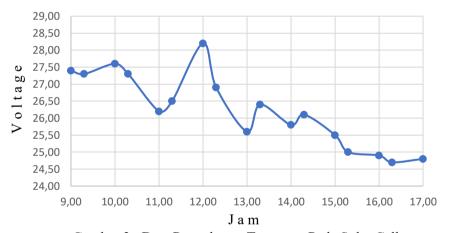
Berbagai jenis bahan digunakan dalam penelitian ini, mulai dari bahan utama sampai dengan komponen pendukung, serta alat pendukung untuk penyelesaian dalam pembuatan mulai dari perancangan sampai finishing. Adapun alat dan bahan yang digunakan tersebut adalah *photovoltaic* (panel surya), *wind turbine*, baterai, scc, inverter, fuse, switch, mcb, terminal relay, stop kontak, kabel dan baterei level meter.

#### HASIL DAN DISKUSI

Model menampilkan sebuah sistem pembangkit listrik hibrida portabel yang dirancang sebagai satu kesatuan fungsional dan terintegrasi. Komponen utama adalah unit Pembangkit Listrik Tenaga Bayu (PLTB) yang berdiri tegak di atas sebuah rangka penopang berwarna biru. Unit turbin ini terdiri dari tiga buah sudu turbin (blade) aerodinamis yang terpasang pada sebuah hub rotor di bagian tengah. Tepat di belakang hub, terdapat generator yang bertugas mengubah energi putar dari sudu menjadi energi listrik. Rangka penopang yang kokoh didesain untuk memberikan stabilitas sekaligus kemudahan dalam perakitan, menunjang aspek portabilitas dari keseluruhan sistem.

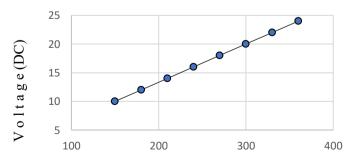
Di samping struktur turbin, diletakkan unit Pembangkit Listrik Tenaga Surya (PLTS) yang terdiri dari sebuah panel surya fotovoltaik. Penempatannya yang terpisah dari rangka utama memberikan fleksibilitas untuk mengarahkannya secara optimal ke matahari. Kedua sumber energi ini, angin dan surya, bekerja secara sinergis untuk menghasilkan listrik.

Selain itu, kotak panel kontrol yang terpasang pada rangka turbin dilengkapi perangkat elektronik seperti Solar Charge Controller (SCC) dan sistem proteksi bekerja untuk mengatur aliran energi dari kedua pembangkit. SCC memastikan bahwa energi yang dihasilkan dialirkan secara aman dan efisien untuk mengisi sebuah baterai atau aki, yang berfungsi sebagai unit penyimpan energi. Baterai ini menyimpan daya listrik sehingga dapat digunakan kapan saja, bahkan saat tidak ada angin maupun sinar matahari. Untuk kebutuhan penggunaan peralatan rumah tangga, sebuah inverter akan mengubah listrik DC dari baterai menjadi listrik AC 220V. Hasil pengembangan prototipe dapat dilihat pada gambar 2.




Gambar 2. Hybrid Sistem PLTS dan PLTB

Data hasil uji produk Pengukuran Solar Cell ditunjukkan pada table 1 berikut.


|       |         | Soll | ar Cell 1 | Cell 1 Solar Cell 2 |      | Seri |      |
|-------|---------|------|-----------|---------------------|------|------|------|
| Jam   | Cuaca   | Arus | Tegangan  | (I)                 | (V)  | (I)  | (V)  |
|       |         | (I)  | (V)       |                     |      |      |      |
| 09.00 | Cerah   | 1.5  | 13.6      | 1.6                 | 13.8 | 1.6  | 27.4 |
| 09.30 | Cerah   | 1.6  | 13.6      | 1.7                 | 13.7 | 1.7  | 27.3 |
| 10.00 | Cerah   | 2.9  | 14.1      | 2.6                 | 13.5 | 2.9  | 27.6 |
| 10.30 | Cerah   | 1.2  | 13.5      | 1.4                 | 13.8 | 1.4  | 27.3 |
| 11.00 | Cerah   | 1.9  | 13.2      | 1.8                 | 13.0 | 1.9  | 26.2 |
| 11.30 | Cerah   | 4.1  | 13.3      | 4.0                 | 13.2 | 4.1  | 24.5 |
| 12.00 | Cerah   | 4.8  | 14.0      | 4.9                 | 14.2 | 4.9  | 28.2 |
| 12.30 | Cerah   | 4.4  | 13.3      | 4.6                 | 13.6 | 4.6  | 26.9 |
| 13.00 | Cerah   | 1.6  | 13.0      | 1.5                 | 12.6 | 1.6  | 25.6 |
| 13.30 | Cerah   | 0.4  | 13.0      | 0.6                 | 13.4 | 0.6  | 26.4 |
| 14.00 | Cerah   | 0.2  | 12.9      | 0.3                 | 12.9 | 0.3  | 25.8 |
| 14.30 | Cerah   | 1.3  | 12.9      | 1.5                 | 13.2 | 1.5  | 26.1 |
| 15.00 | Cerah   | 0.2  | 12.7      | 0.3                 | 12.8 | 0.3  | 25.5 |
| 15.30 | Mendung | 0.0  | 12.6      | 0.0                 | 12.4 | 0.0  | 25.0 |
| 16.00 | Mendung | 0.0  | 12.5      | 0.0                 | 12.4 | 0.0  | 24.9 |
| 16.30 | hujan   | 0.0  | 12.5      | 0.0                 | 12.2 | 0.0  | 24.7 |
| 17.00 | hujan   | 0.0  | 12.5      | 0.0                 | 12.3 | 0.0  | 24.8 |

Tabel 1. Data Pengukuran Solar Cell



Gambar 3. Data Pengukuran Tegangan Pada Solar Cell

Berdasarkan gambar 3 dapat dilihat bahwa intensitas cahaya matahari (Cuaca) mempengaruhi tegangan pada solar cell. Pada jam 10.00 sampai dengan jam 14.00 nilai tegangan yang dihasilkan mencapai 28.2 Volt, sedangkan pada jam 15.00 sampai dengan 17.00 nilai tegangan yang dihasilkan 25.5 Volt. Semakin banyak cahaya matahari yang diperoleh maka semakin besar nilai tegangan yang dihasilkan.



Gambar 4. Data Pengukuran Kecepatan dan Tegangan Wind Turbine

Hasil Data Pengukuran Wind Turbine ditujukkan pada tebel 2 berikut.

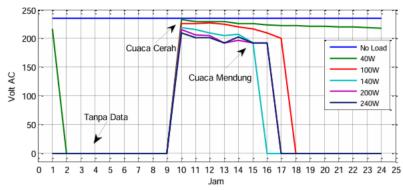
Tabel 2. Data Pengukuran Wind Generator

| Wind Turbin               |                 |  |  |  |  |  |
|---------------------------|-----------------|--|--|--|--|--|
| Kecepatan Generator (Rpm) | Tegangan (V) DC |  |  |  |  |  |
| 150                       | 10              |  |  |  |  |  |
| 180                       | 12              |  |  |  |  |  |
| 210                       | 14              |  |  |  |  |  |
| 240                       | 16              |  |  |  |  |  |
| 270                       | 18              |  |  |  |  |  |
| 300                       | 20              |  |  |  |  |  |
| 330                       | 22              |  |  |  |  |  |
| 360                       | 24              |  |  |  |  |  |

Berdasarkan grafik 4 dapat dilihat bahwa kecepatan generator mempengaruhi nilai tegangan yang dihasilkan. Pada kecepatan 150 Rpm nilai tegangan yang dihasilkan 10 Volt DC, sedangkan pada kecepatan 360 Rpm nilai tegangan yang dihasilkan mencapai 24 Volt DC. Generator ini bisa disebut dengan generator rpm rendah, dimana hanya memerlukan kecepatan yang pelan untuk menghasilkan tegangan normal DC yaitu 12 Volt.

Hasil data pengukuran tegangan dan arus pada inverter tabel 3 data pengukuran tegangan dan arus pada inverter.

Tabel 3. Pengukuran Tegangan Dan Arus Pada Inverter


|       |             |      | Iı       | nverter |      |          |  |
|-------|-------------|------|----------|---------|------|----------|--|
|       | Daya (Watt) |      |          |         |      |          |  |
| Jam   |             | 0    |          | 40      |      |          |  |
|       | Cuaca       | Arus | Tegangan | Cuaca   | Arus | Tegangan |  |
|       |             | (I)  | (V)      |         | (I)  | (V)      |  |
| 10:00 | -           | 0    | 235      | Cerah   | 0,1  | 233      |  |
| 11:00 | -           | 0    | 235      | Cerah   | 0,1  | 230      |  |
| 12:00 | -           | 0    | 235      | Cerah   | 0,1  | 230      |  |
| 13:00 | -           | 0    | 235      | Cerah   | 0,1  | 229      |  |
| 14:00 | -           | 0    | 235      | Mendung | 0,1  | 226      |  |
| 15:00 | -           | 0    | 235      | Cerah   | 0,1  | 226      |  |
| 16:00 | -           | 0    | 235      | Mendung | 0,1  | 224      |  |
| 17:00 | -           | 0    | 235      | Mendung | 0,1  | 223      |  |
| 18:00 | -           | 0    | 235      | Malam   | 0,1  | 222      |  |
| 19:00 | -           | 0    | 235      | Malam   | 0,1  | 221      |  |
| 20:00 | -           | 0    | 235      | Malam   | 0,1  | 221      |  |
| 21:00 | -           | 0    | 235      | Malam   | 0,1  | 220      |  |
| 22:00 | -           | 0    | 235      | Malam   | 0,1  | 220      |  |
| 23:00 | -           | 0    | 235      | Malam   | 0,1  | 219      |  |
| 0:00  | -           | 0    | 235      | Malam   | 0,1  | 218      |  |
| 1:00  | -           | 0    | 235      | Malam   | 0,1  | 217      |  |
| 2:00  | -           | 0    | 235      | -       | -    | -        |  |
| 3:00  | -           | 0    | 235      | -       | -    | -        |  |
| 4:00  | -           | 0    | 235      | -       | -    | -        |  |
| 5:00  | -           | 0    | 235      | -       | -    | -        |  |
| 6:00  | -           | 0    | 235      | -       | -    | -        |  |
| 7:00  | -           | 0    | 235      | -       | -    | -        |  |
| 8:00  | -           | 0    | 235      | _       | -    | -        |  |
| 9:00  | -           | 0    | 235      | -       | -    | -        |  |

Inverter

Harie Setiyadi Jaya, dkk; STEAM Engineering, v. 7, n. 1, pp. 74 – 82, 2025.

|       | Daya (Watt) |      |          |         |      |          |  |
|-------|-------------|------|----------|---------|------|----------|--|
| Jam   | 100         |      |          | 140     |      |          |  |
|       | Cuaca       | Arus | Tegangan | Cuaca   | Arus | Tegangan |  |
|       |             | (I)  | (V)      |         | (I)  | (V)      |  |
| 10:00 | Cerah       | 0,4  | 226      | Cerah   | 0,6  | 219      |  |
| 11:00 | Cerah       | 0,4  | 226      | Mendung | 0,6  | 216      |  |
| 12:00 | Cerah       | 0,4  | 227      | Mendung | 0,6  | 210      |  |
| 13:00 | Cerah       | 0,4  | 225      | Mendung | 0,6  | 205      |  |
| 14:00 | Cerah       | 0,4  | 220      | Cerah   | 0,6  | 207      |  |
| 15:00 | Mendung     | 0,4  | 217      | Mendung | 06   | 192      |  |
| 16:00 | Mendung     | 0,4  | 210      | -       | -    | -        |  |
| 17:00 | Mendung     | 0,4  | 200      | -       | -    | -        |  |
| 18:00 | -           | -    | -        | -       | -    | -        |  |
| 19:00 | -           | -    | -        | -       | -    | -        |  |
| 20:00 | -           | -    | -        | -       | -    | -        |  |
| 21:00 | -           | -    | -        | -       | -    | -        |  |
| 22:00 | -           | -    | -        | -       | -    | -        |  |
| 23:00 | -           | -    | -        | -       | -    | -        |  |
| 0:00  | -           | -    | -        | -       | -    | -        |  |
| 1:00  | -           | -    | -        | -       | -    | -        |  |
| 2:00  | -           | -    | -        | -       | -    | -        |  |
| 3:00  | -           | -    | -        | -       | -    | -        |  |
| 4:00  | -           | -    | -        | -       | -    | -        |  |
| 5:00  | -           | -    | -        | -       | -    | -        |  |
| 6:00  | -           | -    | -        | -       | -    | -        |  |
| 7:00  | -           | -    | -        | -       | -    | -        |  |
| 8:00  | -           | -    | -        | -       | -    | -        |  |
| 9:00  | -           | -    | _        | -       | -    | _        |  |

|       |             |      |         | erter   |      |          |  |  |
|-------|-------------|------|---------|---------|------|----------|--|--|
|       | Daya (Watt) |      |         |         |      |          |  |  |
| Jam   |             | 200  |         |         | 240  |          |  |  |
|       | Cuaca       | Arus | Cuaca   | Cuaca   | Arus | Tegangan |  |  |
|       |             | (I)  |         |         | (I)  | (V)      |  |  |
| 10:00 | Cerah       | 0,9  | Cerah   | Cerah   | 0,9  | 216      |  |  |
| 11:00 | Cerah       | 0,8  | Cerah   | Cerah   | 0,8  | 206      |  |  |
| 12:00 | Cerah       | 0,8  | Cerah   | Cerah   | 0,8  | 205      |  |  |
| 13:00 | Mendung     | 0,8  | Mendung | Mendung | 0,8  | 192      |  |  |
| 14:00 | Cerah       | 0,8  | Cerah   | Cerah   | 0,8  | 197      |  |  |
| 15:00 | Mendung     | 0,8  | Mendung | Mendung | 0,8  | 192      |  |  |
| 16:00 | Mendung     | 0,8  | Mendung | Mendung | 0,8  | 192      |  |  |
| 17:00 | -           | -    | -       | -       | -    | -        |  |  |
| 18:00 | -           | -    | -       | -       | -    | -        |  |  |
| 19:00 | -           | -    | -       | -       | -    | -        |  |  |
| 20:00 | -           | -    | -       | -       | -    | -        |  |  |
| 21:00 | -           | -    | -       | -       | -    | -        |  |  |
| 22:00 | -           | -    | -       | -       | -    | -        |  |  |
| 23:00 | -           | -    | -       | -       | -    | -        |  |  |
| 0:00  | -           | -    | -       | -       | -    | -        |  |  |
| 1:00  | -           | -    | -       | -       | -    | -        |  |  |
| 2:00  | -           | -    | -       | -       | -    | -        |  |  |
| 3:00  | -           | -    | -       | -       | -    | -        |  |  |
| 4:00  | -           | -    | -       | -       | -    | -        |  |  |
| 5:00  | -           | -    | -       | -       | -    | -        |  |  |
| 6:00  | -           | -    | -       | -       | -    | -        |  |  |
| 7:00  | -           | -    | -       | -       | -    | -        |  |  |
| 8:00  | -           | -    | -       | -       | -    | -        |  |  |
| 9:00  | -           | -    | -       | -       | -    | -        |  |  |



Gambar 5. Data Pengukuran Tegangan dan Arus Pada Inverter

Berdasarkan grafik 5 dapat dilihat bahwa nilai beban dan cuaca dapat mempengaruhi tegangan output pada inverter yang digunakan. Pada nilai beban 240 Watt nilai tegangan yang dihasilkan oleh inverter sebesar 219 Volt pada jam 10.00 dengan cuaca cerah dan 192 Volt pada jam 15.00 dengan cuaca mendung. Sedangkan, pada nilai beban 40 Watt nilai tegangan yang dihasilkan oleh inverter lebih stabil sebesar 233 Volt pada jam 10.00 dengan cuaca cerah dan 226 Volt pada jam 15.00 dengan cuaca cerah. Semakin besar nilai beban yang digunakan semakin cepat habis kapasitas baterai yang dimiliki, pada beban 240 Watt mampu bertahan selama 6 jam dengan fluktuasi cuaca sedangkan pada beban 40 Watt mampu bertahan selama 16 jam dengan fluktuasi cuaca.

Perhitungan Kapasitas Baterai

 $P_{baterai} = 12 \text{ V} \times 100 \text{ Ah}$ 

P<sub>baterai</sub> = 1200 Wh

Perhitungan Kapasitas Baterai Berdasarkan Beban

 $I_{BC} = \frac{50 \text{ W}}{12 \text{ V}}$ 

 $I_{BC} = 4,16 \text{ Ah}$ 

Perhitungan Kapasitas Baterai Berdasarkan Beban dan DOD

 $I_{BCDOD} = \frac{4,16 \text{ Ah}}{0.8}$ 

 $I_{BCDOD} = 5.2 \text{ Ah}$ 

Berdasarkan perhitungan tersebut, dengan baterai berkapasitas 100 Ah mampu menyuplai beban 50 Watt selama 19,23 Jam. Jika, dengan beban 500 Watt maka hanya mampu selama 1,9 Jam. Beban 500 Watt dapat bertahan hingga 13,4 Jam jika memiliki baterai berkapasitas 700 Ah.

Hasil pengujian menunjukkan korelasi positif antara intensitas cahaya matahari dengan arus dan tegangan yang dihasilkan oleh panel surya, dengan output puncak mencapai 20V dan 1,16A pada cuaca cerah. Temuan ini sepenuhnya konsisten dengan prinsip dasar efek fotovoltaik. Sel surya, yang umumnya terbuat dari semikonduktor seperti silikon, bekerja dengan mengubah energi foton dari cahaya matahari menjadi aliran elektron. Ketika intensitas cahaya meningkat, jumlah foton yang menumbuk permukaan sel surya per satuan waktu juga meningkat. Hal ini menyebabkan lebih banyak elektron yang tereksitasi dan terlepas dari atomnya, sehingga menghasilkan aliran arus listrik yang lebih besar (Kalogirou, 2013).

Pada unit PLTB, hasil pengukuran menunjukkan bahwa semakin tinggi kecepatan putar turbin (rpm), semakin besar pula tegangan yang dihasilkan, dengan puncak 24V pada 360 rpm. Fenomena ini dapat dijelaskan melalui dua prinsip fisika yang bekerja secara berurutan: aerodinamika sudu dan induksi elektromagnetik pada generator. Pertama, sudu turbin dirancang sebagai sebuah *airfoil* yang menghasilkan gaya angkat (lift) ketika dilewati aliran udara. Semakin kencang kecepatan angin, semakin besar gaya angkat yang dihasilkan, yang kemudian dikonversi menjadi torsi atau gaya putar pada poros rotor (Manwell et al., 2009). Kedua, poros rotor terhubung langsung ke generator. Sesuai

dengan Hukum Induksi Faraday, perubahan fluks magnetik di dalam kumparan kawat akan menginduksi Gaya Gerak Listrik (GGL) atau tegangan. Putaran yang lebih cepat (rpm tinggi) berarti magnet di dalam generator berputar lebih cepat, menyebabkan perubahan fluks magnetik yang lebih cepat pula. Hal ini secara langsung menghasilkan tegangan induksi yang lebih tinggi (Hughes & Drury, 2013). Dengan demikian, data yang diperoleh secara empiris memvalidasi hubungan fundamental antara kecepatan angin, kecepatan rotasi, dan output tegangan pada sistem pembangkit listrik tenaga bayu.

Keunggulan utama dari sistem yang dikembangkan terletak pada penggabungan dua sumber energi yang bersifat intermiten (tidak konstan) dan desainnya yang portabel. Sifat saling melengkapi antara energi surya (hanya tersedia di siang hari) dan energi angin (dapat tersedia di siang maupun malam hari) secara signifikan meningkatkan keandalan dan ketersediaan pasokan listrik dibandingkan sistem tunggal (standalone) (Sinha & Chandel, 2014). Jika kondisi berawan mengurangi output PLTS, sistem masih berpotensi mendapatkan daya dari PLTB, dan sebaliknya.

Desain portabel pada prototipe ini memberikan nilai kebaruan yang signifikan, diluar fungsinya untuk elektrifikasi desa terpencil, portabilitas memungkinkan sistem ini untuk digunakan sebagai unit daya darurat. Dalam situasi pasca-bencana alam di mana infrastruktur kelistrikan lumpuh, unit seperti ini dapat dengan cepat dipindahkan dan dioperasikan di lokasi pengungsian untuk memenuhi kebutuhan listrik krusial, seperti penerangan, pengisian daya alat komunikasi, dan peralatan medis dasar.

# **SIMPULAN**

Pengukuran solar cell didapatkan hasil bahwa semakin besar intensitas cahaya matahari maka didapatkan semakin besar arus dan tegangannya, untuk perolehan data pada pengukuran solar cell didapatkan tegangan tertinggi 20V dan arus 1,16A pada cuaca cerah. Pada pengukuran wind turbine didapatkan hasil semakin besar kecepatan angin maka didapatkan semakin besar tegangan yang dihasilkan. Untuk perolehan data pada pengukuran wind turbine didapatkan tegangan tertinggi yaitu 24V dengan kecepatan angin 360 rpm. Dengan sistem hybrid memiliki kelebihan pendapatan sumber tegangan dari 2 sumber berbeda, dimana pada alat ini sumber pertama dihasilkan oleh solar cell dan sumber kedua dihasilkan oleh wind turbine. Sehingga jika salah satu sumber pembangkit listrik tidak bekerja maka akan dibantu oleh pembangkit listrik kedua atau digunakan secara bergantian sesuai dengan kondisi alam di lapangan. Dengan digunakannya model portable pada alat ini maka akan mempermudah proses transportasi serta perpindahan alat yang akan digunakan di tempat pengungsian bencana alam.

## **DAFTAR RUJUKAN**

No 2, Oktober 2015, pp. 12–19, 2015.

- D. Perlanda, S. Alam, and S. Purwiyanti, "Alat Pengumpul Kopi Model Terhampar Secara Otomatis Berbasis Arduino Uno," Electrician, vol. 12, no. 1, p. 1, 2018, doi: 10.23960/elc.v12n1.2067.
- Hughes, A., & Drury, B. (2013). *Electric motors and drives: Fundamentals, types and applications* (4th ed.). Newnes.
- Kalogirou, S. A. (2013). Solar energy engineering: Processes and systems (2nd ed.). Academic Press. Kalteng Online. (2023, 18 Januari). Ratusan desa belum berlistrik. <a href="https://www.kaltengonline.com/2023/01/18/contoh-ratusan-desa-belum-berlistrik/">https://www.kaltengonline.com/2023/01/18/contoh-ratusan-desa-belum-berlistrik/</a> Mario Roal, "Peningkatan Efisiensi Energi Menggunakan Baterai Dengan Kendali Otomatis Penerangan Ruang Kelas Berbasis PLTS," J. Elkha, vol. 7, no. Jurnal ELKHA Vol.7,
- Kementerian Energi dan Sumber Daya Mineral. (2018, 10 Januari). *Rasio elektrifikasi 2017 melebihi target*. ESDM. <a href="https://www.esdm.go.id/id/media-center/arsip-berita/rasio-elektrifikasi-2017-melebihi-target">https://www.esdm.go.id/id/media-center/arsip-berita/rasio-elektrifikasi-2017-melebihi-target</a>P. Togan, "Perencanaan Sistem Penyimpanan Energi dengan Menggunakan Battery pada Pembangkit Listrik Tenaga Arus Laut (PLTAL) di Desa Ketapang, Kabupaten Lombok Timur, NTB.," pp. 1–6, 2009.
- Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained: Theory, design and application (2nd ed.). John Wiley & Sons.
- Radio Republik Indonesia. (2023, 7 Juni). *Rasio desa berlistrik PLN di Kalteng ditargetkan 100 persen pada 2024*. RRI.co.id. <a href="https://www.rri.co.id/daerah/contoh-rasio-desa-berlistrik-pln-kalteng/">https://www.rri.co.id/daerah/contoh-rasio-desa-berlistrik-pln-kalteng/</a>

- Ruskardi, "Kajian Teknis dan Analisis Ekonomis PLTS Off-Grid Solar System Sebagai Sumber Energi Alternatif," J. Tek. Elektro, vol. 7, no. 1, pp. 1–6, 2015, [Online]. Available: http://jurnal.untan.ac.id/index.php/Elkha/article/download/9409/9298.
- Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. *Renewable and Sustainable Energy Reviews*, 32, 192–205. https://doi.org/10.1016/j.rser.2014.01.035
- Situs Kementrian Energi dan Sumber Daya Mineral, Energi Surya dan Pengembangan di Indonesia, 24 September 2009." http://majalahenergi.com.
- S. Honsberg, Christiana & Bowden, "Photovoltaic: Device, Systems, and Application PVCDROM 1.0." .2009.
- S. Pewarna, T. Sspt, T. Efisiensi, and J. Kimia, "Pengaruh Hubungan Seri-Paralel Pada Rangkaian Sel," 2009.
- Y. I. Nakhoda and C. Saleh, "the Effect of Air Gap Distance Variation Between Stator and Rotor in Permanent Magnet Generator With Low Rotation Multi-Disc Axial Flux," JEEMECS (Journal Electr. Eng. Mechatron. Comput. Sci., vol. 3, no. 1, pp. 55–64, 2020, doi: 10.26905/jeemecs.v3i1.3999.