Mapping Climate Variables as an Effort to Mitigate Forest Fire Disaster in Central Kalimantan

Authors

  • Febrianto Afli Universitas Palangka Raya, Kalimantan Tengah, Indonesia
  • Kadek Ayu Cintya Adelia Universitas Palangka Raya, Kalimantan Tengah, Indonesia
  • Robiatul Witari Wilda Universitas Palangka Raya, Kalimantan Tengah, Indonesia
  • Dessy Lutfiani Pratiwie Universitas Palangka Raya, Kalimantan Tengah, Indonesia
  • Indah Gumilang Dwinanda Palangka Raya University

Abstract

Climate change and global warming have had far-reaching impacts at the global, national and local levels. Impacts that have emerged in recent decades include tropical storms, changes in weather patterns, floods, landslides, melting ice caps in the north and south, sea level rise, drought and land and forest fires. Land and forest fires are getting worse not only in Central Kalimantan, at least recorded in October 2021 there were 2,375 fire hotspots with an area burned based on the Central Kalimantan Province Regional Disaster Management Agency (BPBD) report in the field, which reached around 642.8 ha. The first step in mitigating land and forest fires is to make predictions or preliminary calculations related to rainfall, temperature and humidity that occur in Central Kalimantan. One of the methods that can be used in predicting weather is by using machine learning. This research focuses on machine learning, where this method will help automatically recognise complex patterns and make intelligent decisions based on data. Machine learning can learn patterns from historical data contained in the database from previous years to predict rainfall, temperature and humidity that occur in Central Kalimantan. The prediction results of the Mechine Learning calculation can be made into a distribution map based on the predicted value of the intervals.

Downloads

Download data is not yet available.

References

Kepala Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, “INOVASI TEKNOLOGI SUMBERDAYA LAHAN UNTUK PERTANIAN BERKELANJUTAN,” Bogor, Mar. 2020. Accessed: Oct. 19, 2023. [Online]. Available: https://bbsdlp-litbang-ppid.pertanian.go.id/doc/32/LAPORAN%20TAHUNAN/laptah-2019.pdf

Y. Qamariyanti, R. Usman, and D. Rahmawati, “Pencegahan dan Penanggulangan Kebakaran Lahan Gambut dan Hutan,” Jurnal Ilmu Lingkungan, vol. 21, no. 1, pp. 132–142, Jan. 2023.

Y. Adrian and E. Ningsih, “PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK,” in Seminar Nasional Informatika, Medan: Jurnal Potensi Utama, 2014, pp. 184–189.

C. Oktaviani and Afdal, “Prediksi Curah Hujan Bulanan Menggunakan Jaringan Syaraf Tiruan dengan Beberapa Fungsi Pelatihan Backpropagation (Studi Kasus: Stasiun Meteorologi Tabing Padang, Tahun 2001-2012),” Jurnal Fisika Unand, vol. 2, no. 4, pp. 228–237, Oct. 2013.

N. S. Fatonah, “Penerapan Deteksi Bencana Banjir Menggunakan Metode Machine Learning,” Format Jurnal Ilmiah Teknik Informatika, vol. 10, no. 2, p. 119, Jul. 2021, doi: 10.22441/format.2021.v10.i2.002.

Published

2024-01-15

How to Cite

Febrianto Afli, Kadek Ayu Cintya Adelia, Robiatul Witari Wilda, Dessy Lutfiani Pratiwie, & Indah Gumilang Dwinanda. (2024). Mapping Climate Variables as an Effort to Mitigate Forest Fire Disaster in Central Kalimantan. Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Palangka Raya, 5(1). Retrieved from https://e-journal.upr.ac.id/index.php/SNST2023/article/view/11230