

Volume 2, Edisi 02, November, Tahun 2025

JURNAL ARSITEKTUR DAN LINGKUNGAN BINAAN

Jurusan/Program Studi Arsitektur, Fakultas Teknik, Universitas Palangka Raya, Kampus UPR Tunjung Nyaho Jalan Hendrik Timang, Palangka Raya (73111), Kalimantan Tengah

DEWAN REDAKSI

Penerbit

Jurusan Arsitektur, Fakultas Teknik, Universitas Palangka Raya

Penanggung Jawab

Ketua Jurusan Arsitektur

Redaktur

Dr. Indrabakti Sangalang, S.T., M.T.

Editor

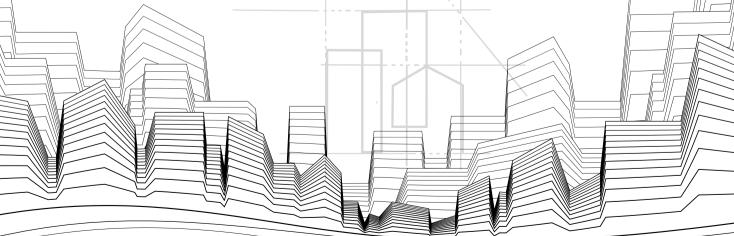
Rony Setya Siswadi. S.T., M.Sc.

Titiani Widati, S.T., M.Sc.

I Kadek Mardika, S.T., M.Sc.

Theo Fransisco, S.T., M.Sc.

Reviewer


Dr. Tari Budayanti Usop. S.T., M.T. (Universitas Palangka Raya)

Dr. Johannes Adiyanto, S.T., M.T. (Universitas Sriwijaya)

Ir. Syahrozi. M.T. (Universitas Palangka Raya)

Dr. Mandarin Guntur, S.T., M.T. (Universitas Palangka Raya)

Jurusan/Program Studi Arsitektur, Fakultas Teknik, Universitas Palangka Raya, Kampus UPR Tunjung Nyaho Jalan Hendrik Timang, Palangka Raya (73111), Kalimantan Tengah

Perumahan Berbasis Transit-Oriented Development (TOD)

Alderina Rosalia¹, Indrabakti Sangalang²

^{1,2} Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal diterima 5/5/2025 Tanggal Revisi -Tanggal Publikasi Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

ABSTRAK

Transit-Oriented Development (TOD) merupakan konsep perencanaan perkotaan yang mengintegrasikan sistem transportasi publik dengan pengembangan permukiman, guna menciptakan lingkungan yang lebih berkelanjutan, efisien, dan ramah pejalan kaki. Konsep ini telah banyak diterapkan di kota-kota besar, namun penerapannya di kota sedang dan kecil di Indonesia masih menghadapi berbagai tantangan. Artikel ini bertujuan untuk menganalisis peluang dan hambatan implementasi TOD dalam pengembangan perumahan di kota dengan populasi menengah hingga kecil.

Metode yang digunakan dalam penelitian ini adalah studi literatur, analisis kebijakan perencanaan, serta studi kasus penerapan TOD di beberapa kota di Indonesia. Hasil penelitian menunjukkan bahwa keberhasilan TOD sangat dipengaruhi oleh kualitas infrastruktur transportasi publik, kebijakan tata ruang, serta keterlibatan berbagai pemangku kepentingan, termasuk pemerintah dan pengembang perumahan. Meskipun konsep TOD dapat meningkatkan aksesibilitas dan mengurangi ketergantungan pada kendaraan pribadi, tantangan utama yang dihadapi adalah kurangnya investasi dalam transportasi publik, ketimpangan penggunaan lahan, serta resistensi dari masyarakat terhadap perubahan pola mobilitas.

Sebagai rekomendasi, penelitian ini menyarankan adanya kebijakan insentif bagi pengembang perumahan untuk membangun kawasan berbasis TOD, peningkatan konektivitas antar moda transportasi, serta edukasi kepada masyarakat mengenai manfaat lingkungan dan ekonomi dari hunian yang lebih terintegrasi dengan transportasi publik.

Kata Kunci : *Transit-Oriented Development (TOD)*, Perumahan, Perkotaan, Transportasi Publik, Tata Ruang

Corresponding Author:

Nama *Author* : Alderina Rosalia

Email:

alderinarosalia@arch.upr.ac.id

Abstract

Transit-Oriented Development (TOD) is an urban planning concept that integrates public transportation systems with residential development, in order to create a more sustainable, efficient, and pedestrian-friendly environment. This concept has been widely applied in large cities, but its application in medium and small cities in Indonesia still faces various challenges. This article aims to analyze the opportunities and obstacles to implementing TOD in

Vol. I, No. 01, Mei 2025

E-ISSN: in progress

housing development in cities with medium to small populations.

The methods used in this study are literature studies, planning policy analysis, and case studies of TOD implementation in several cities in Indonesia. The results of the study show that the success of TOD is greatly influenced by the quality of public transportation infrastructure, spatial planning policies, and the involvement of various stakeholders, including the government and housing developers. Although the TOD concept can improve accessibility and reduce dependence on private vehicles, the main challenges faced are the lack of investment in public transportation, land use inequality, and community resistance to changes in mobility patterns.

As a recommendation, this study suggests an incentive policy for housing developers to build TOD-based areas, increasing connectivity between transportation modes, and educating the community about the environmental and economic benefits of housing that is more integrated with public transportation.

Keywords : Transit-Oriented Development (TOD), Housing, Urban, Public Transportation, Spatial Planning

PENDAHULUAN

Perkembangan pesat sektor perkotaan di Indonesia dalam beberapa dekade terakhir telah menciptakan tantangan besar dalam hal penyediaan hunian yang layak dan terjangkau. Menurut data Badan Pusat Statistik (BPS), Indonesia mengalami urbanisasi yang sangat cepat, dengan lebih dari 56% populasi tinggal di perkotaan pada tahun 2020 [1]. Fenomena ini menyebabkan peningkatan kebutuhan akan perumahan yang berkualitas, sekaligus memicu masalah kemacetan, polusi udara, dan kurangnya ruang terbuka hijau di kota-kota besar. Salah satu solusi untuk mengatasi tantangan ini adalah dengan menerapkan *Transit-Oriented Development (TOD)* dalam pengembangan perumahan, yang mengintegrasikan pembangunan perumahan dengan sistem transportasi publik yang efisien.

Transit-Oriented Development (TOD) adalah pendekatan perencanaan perkotaan yang mengutamakan pembangunan kawasan yang terintegrasi dengan transportasi publik. Tujuan utama TOD adalah menciptakan lingkungan yang dapat mengurangi ketergantungan pada kendaraan pribadi, mengurangi kemacetan, serta meningkatkan kualitas hidup melalui aksesibilitas yang lebih baik ke fasilitas publik, pekerjaan, dan pusat kegiatan lainnya. Prinsip dasar TOD adalah pengembangan kawasan hunian yang terletak dalam jangkauan yang mudah diakses dari sistem transportasi publik seperti stasiun kereta, halte bus, atau terminal transportasi lainnya [2]. Di Indonesia, konsep TOD mulai mendapatkan perhatian dalam beberapa tahun terakhir, terutama di kota-kota besar seperti Jakarta, Surabaya, dan Bandung. Namun, penerapan TOD di kota-kota sedang dan kecil masih terbatas. Sementara itu, populasi di kota-kota tersebut terus berkembang pesat, dan tantangan dalam menyediakan perumahan yang efisien dan ramah lingkungan semakin mendesak.

Pengembangan perumahan berbasis TOD di kota sedang dan kecil dapat mengurangi ketergantungan pada kendaraan pribadi dan mengoptimalkan pemanfaatan lahan terbatas, yang merupakan masalah utama di kawasan perkotaan yang padat. Meskipun TOD umumnya lebih

banyak diterapkan di kota-kota besar yang memiliki infrastruktur transportasi yang lebih baik, kota-kota sedang dan kecil di Indonesia sebenarnya memiliki potensi besar untuk menerapkan konsep ini, dengan syarat adanya perencanaan transportasi yang lebih baik dan kebijakan pemerintah yang mendukung. Namun, meskipun konsep TOD dapat memberikan banyak manfaat, implementasinya di kota-kota sedang dan kecil di Indonesia menghadapi sejumlah tantangan. Keterbatasan infrastruktur transportasi publik yang terintegrasi, ketersediaan lahan, serta resistensi masyarakat terhadap perubahan pola mobilitas menjadi hambatan yang perlu diatasi. Oleh karena itu, penting untuk mengkaji lebih dalam mengenai potensi dan tantangan penerapan TOD pada perumahan di kota-kota sedang dan kecil di Indonesia.

KAJIAN PUSTAKA

TOD adalah konsep perencanaan perkotaan yang mengutamakan pengembangan kawasan yang terhubung langsung dengan sistem transportasi publik seperti kereta, bus, atau moda transportasi massal lainnya [2]. Tujuan utama TOD adalah menciptakan lingkungan yang ramah pejalan kaki, mengurangi ketergantungan pada kendaraan pribadi, serta meningkatkan kualitas hidup melalui akses yang lebih mudah ke transportasi umum, fasilitas publik, dan pekerjaan. Hal ini sejalan dengan penelitian yang dilakukan oleh Sallis dan Owen (2015), yang menekankan pentingnya integrasi sistem transportasi dan pengembangan perumahan untuk mendorong pola hidup yang lebih aktif dan sehat. Pada prinsipnya, TOD berfokus pada pengembangan kawasan hunian yang terletak dalam jarak yang mudah dijangkau dari pusat transportasi umum (biasanya dalam radius 400–800 meter). Dengan demikian, penghuni dapat dengan mudah mengakses transportasi umum untuk mobilitas sehari-hari, yang pada gilirannya dapat mengurangi kebutuhan akan kendaraan pribadi, mengurangi kemacetan, dan mengurangi emisi karbon.

Di Indonesia, konsep TOD mulai diterapkan di kota-kota besar seperti Jakarta, Surabaya, dan Bandung, yang memiliki infrastruktur transportasi massal yang lebih berkembang. Namun, penerapan TOD di kota-kota sedang dan kecil di Indonesia masih terbatas. Tantangan utama penerapan TOD di kota-kota sedang dan kecil adalah keterbatasan infrastruktur transportasi yang terintegrasi, serta resistensi dari masyarakat yang terbiasa dengan penggunaan kendaraan pribadi [3]. Meskipun demikian, kota-kota kecil dan sedang di Indonesia memiliki potensi besar untuk menerapkan TOD, terutama jika pengembangan perumahan berbasis TOD dapat mengoptimalkan penggunaan lahan terbatas yang ada. Pengembangan TOD di kota-kota ini juga dapat berfungsi sebagai solusi untuk mengurangi kemacetan dan polusi udara, serta mendorong perubahan pola mobilitas yang lebih berkelanjutan. Pengembangan perumahan berbasis TOD di kota-kota sedang dan kecil dapat membawa sejumlah manfaat, baik dari sisi ekonomi, sosial, maupun lingkungan. Secara ekonomi, TOD dapat mengurangi biaya transportasi bagi penghuni karena mereka tidak lagi bergantung pada kendaraan pribadi. Ini juga dapat meningkatkan aksesibilitas ke fasilitas publik, seperti rumah sakit, sekolah, dan pusat perbelanjaan, yang umumnya terletak di sekitar pusat transportasi publik [2]. Secara sosial, TOD dapat menciptakan ruang hidup yang lebih terintegrasi, memfasilitasi interaksi sosial, dan mendorong pengembangan komunitas yang lebih inklusif. Dari sisi lingkungan, penerapan TOD berpotensi mengurangi emisi karbon [4], mengurangi penggunaan energi, dan mendukung pengelolaan sumber daya alam yang lebih efisien. Dengan menyediakan hunian yang terhubung langsung dengan transportasi publik, TOD membantu mengurangi kebutuhan akan kendaraan pribadi, yang merupakan salah satu penyebab utama kemacetan dan polusi udara di kota-kota besar. Walaupun TOD menawarkan berbagai manfaat, penerapannya di kota-kota sedang dan kecil menghadapi sejumlah tantangan. Pertama, keterbatasan infrastruktur transportasi yang terintegrasi menjadi kendala utama. Tanpa adanya sistem transportasi umum yang efisien dan terkoordinasi dengan baik, penerapan TOD menjadi kurang efektif [5]. Selain itu, ketersediaan lahan untuk pembangunan perumahan di kota-kota kecil juga menjadi tantangan [6].

Banyak kota sedang dan kecil yang masih mengalami keterbatasan lahan yang dapat digunakan untuk pembangunan kawasan berbasis TOD, terutama di pusat kota yang sudah padat. Tantangan lainnya adalah resistensi masyarakat terhadap perubahan pola mobilitas [6]. Nur mengunggapkan penggunaan kendaraan pribadi di Indonesia masih sangat tinggi, dan masyarakat seringkali lebih memilih kenyamanan mobil pribadi daripada transportasi publik yang dianggap kurang efisien [7]. Oleh karena itu, perubahan paradigma masyarakat dalam hal mobilitas dan transportasi sangat penting untuk keberhasilan implementasi TOD.

Perumahan Berbasis *Transit-Oriented Development (TOD)*

Pengembangan perumahan berbasis *Transit-Oriented Development (TOD)* merupakan pendekatan yang berorientasi pada integrasi antara transportasi publik dan kawasan hunian guna menciptakan lingkungan yang lebih efisien, berkelanjutan, dan nyaman bagi masyarakat. Konsep ini tidak hanya mengatasi permasalahan transportasi di kota-kota besar, tetapi juga dapat diterapkan di kota-kota sedang dan kecil untuk meningkatkan kualitas hidup penduduknya serta mengoptimalkan penggunaan lahan perkotaan [2]. Strategi pengembanga perumahan dengan basis *Transit-Oriented Development (TOD)* antara lain :

- 1. Perencanaan Tata Ruang yang Berorientasi pada Transportasi Publik
- Pembangunan perumahan berbasis TOD harus diawali dengan perencanaan tata ruang yang mengakomodasi kebutuhan mobilitas masyarakat sekaligus mengoptimalkan penggunaan lahan. Menurut Dittmar & Ohland [8] prinsip utama dalam perencanaan kawasan TOD adalah memastikan bahwa perumahan, pusat perbelanjaan, dan area komersial berada dalam jangkauan 400–800 meter dari stasiun atau halte transportasi publik. Elemen utama yang harus diperhatikan dalam perencanaan tata ruang berbasis TOD meliputi:
 - a) Zonasi Campuran (Mixed-Use Development) yang merupakan integrasi antara perumahan, area komersial, dan fasilitas publik untuk menciptakan lingkungan yang dinamis dan mengurangi kebutuhan perjalanan jarak jauh [9]
 - b) Kawasan Berorientasi Pejalan Kaki (Walkability): Pembangunan infrastruktur trotoar yang aman, jalur sepeda, serta ruang terbuka hijau untuk meningkatkan kenyamanan pejalan kaki dan mengurangi ketergantungan pada kendaraan pribadi [10]
 - c) Densitas yang Efektif: Pembangunan perumahan dengan kepadatan sedang hingga tinggi untuk memaksimalkan efisiensi lahan di sekitar koridor transportasi publik [11]
- 2. Pengembangan Infrastruktur Transportasi Publik yang Terintegrasi Salah satu faktor kunci keherhasilan TOD adalah ketersediaan infrastruktur

Salah satu faktor kunci keberhasilan TOD adalah ketersediaan infrastruktur transportasi publik yang efisien, terjangkau, dan mudah diakses. Beberapa bentuk transportasi yang dapat mendukung pengembangan perumahan berbasis TOD meliputi:

- a) Kereta komuter atau MRT/LRT: Menjadi moda utama di kota-kota besar seperti Jakarta dan Surabaya, yang memungkinkan perjalanan cepat dan bebas macet (Dewan Pembangunan Perkotaan, 2019).
- b) Bus Rapid Transit (BRT): Moda transportasi yang lebih fleksibel dan dapat diterapkan di kota-kota sedang dengan sistem jalur bus khusus untuk meningkatkan efisiensi (Cervero, 2013).
- c) Angkutan umum berbasis komunitas: Seperti angkot atau minibus yang dapat menjadi feeder menuju jaringan transportasi utama, terutama di kota-kota kecil (Newman, Beatley, & Boyer, 2017).

Agar sistem transportasi publik dapat berfungsi optimal dalam mendukung TOD, perlu dilakukan integrasi antara berbagai moda transportasi serta penerapan sistem tiket terpadu. Menurut Banister (2008), keberhasilan TOD sangat bergantung pada kemudahan akses transportasi dan kenyamanan pengguna dalam berpindah moda transportasi.

Implementasi TOD di Beberapa Kota

a. Singapura

Pemerintah Singapura telah menerapkan TOD secara sistematis dengan mengembangkan jaringan MRT dan LRT yang menghubungkan kawasan perumahan dengan pusat bisnis dan komersial. Dengan sistem tiket elektronik yang terintegrasi dan pengembangan perumahan vertikal, Singapura berhasil menciptakan pola mobilitas yang lebih efisien (Phang, 2018).

b. Curitiba, Brasil

Curitiba merupakan salah satu kota yang berhasil menerapkan konsep TOD melalui sistem Bus Rapid Transit (BRT) yang terintegrasi dengan kawasan pemukiman. Penggunaan lahan yang terencana dengan baik di sekitar jalur BRT membantu mengurangi kemacetan dan meningkatkan kualitas hidup penduduk kota (Cervero, 1998).

c. Jakarta, Indonesia

Di Indonesia, konsep TOD mulai diterapkan pada proyek LRT Jabodebek dan MRT Jakarta, yang mengembangkan kawasan hunian di sekitar stasiun dengan sistem zonasi campuran. Namun, tantangan utama dalam implementasi TOD di Jakarta adalah masih tingginya penggunaan kendaraan pribadi akibat kurangnya integrasi transportasi antar moda (Indrawati & Suryanto, 2021).

KESIMPULAN

Pengembangan perumahan berbasis TOD merupakan solusi yang efektif untuk mengatasi permasalahan urbanisasi, kemacetan, dan penyediaan hunian yang efisien di kota-kota besar maupun kecil. Keberhasilannya sangat bergantung pada perencanaan tata ruang yang tepat, pengembangan infrastruktur transportasi yang terintegrasi, kebijakan pemerintah yang mendukung, partisipasi masyarakat, serta kemitraan antara sektor publik dan swasta. Sebagai rekomendasi, Indonesia perlu:

- 1. Meningkatkan investasi pada transportasi publik yang efisien dan terjangkau.
- 2. Menyusun kebijakan yang mendukung pengembangan TOD, termasuk insentif bagi pengembang perumahan.
- 3. Meningkatkan koordinasi antar moda transportasi serta penerapan sistem tiket terpadu.
- 4. Mengadakan kampanye publik untuk meningkatkan kesadaran masyarakat terhadap manfaat TOD.

Dengan strategi yang tepat, TOD dapat menjadi pendekatan yang efektif dalam mewujudkan kota yang lebih berkelanjutan dan layak huni.

DAFTAR PUSTAKA

- [1] D. F. Pida, K. N. Aini, and C. A. Putri, "Dampak Urbanisasi terhadap Perkembangan Kota di Indonesia: Tinjauan dari Aspek Ekonomi Pembangunan," WISSEN J. Ilmu Sos. dan Hum., vol. 3, no. 1, pp. 226–238, 2025.
- [2] R. Cervero, "Transit-oriented development in the United States: Experiences, challenges,

5

- and prospects," 2004.
- [3] S. K. Jusman, I. L. Caroles, and A. E. IPU, *Tematik Tren Transportasi Kota Makassar: Pokok Pikiran Tentang Transportasi di Kota Makassar.* wawasan Ilmu, 2024.
- [4] F. R. Ashik, M. H. Rahman, and M. Kamruzzaman, "Investigating the impacts of transit-oriented development on transport-related CO2 emissions," *Transp. Res. Part D Transp. Environ.*, vol. 105, p. 103227, 2022.
- [5] C. Ling, Z. Chen, and T. Yang, "Evaluating Urban Inclusiveness for Transit-Oriented Development Using Location Affordability and its Influencing Factors in a Fast-Developing Megacity," Tianren, Eval. Urban Inclusiveness Transit-Oriented Dev. Using Locat. Affordabil. its Influ. Factors a Fast-Developing Megacity.
- [6] A. Ibraeva, G. H. de Almeida Correia, C. Silva, and A. P. Antunes, "Transit-oriented development: A review of research achievements and challenges," *Transp. Res. Part A Policy Pract.*, vol. 132, pp. 110–130, 2020.
- [7] A. Nur, Y. J. Isak, M. E. Adyatma, R. Ryandhika, and M. R. Ajiansyah, "Peranan transportasi publik dalam pengurangan kemacetan di Jakarta," *J. Informatics Busisnes*, vol. 2, no. 3, pp. 432–442, 2024.
- [8] H. Dittmar and G. Ohland, *The new transit town: Best practices in transit-oriented development*. Island Press, 2012.
- [9] P. Newman, J. Kenworthy, P. Newman, and J. Kenworthy, "Urban transportation patterns and trends in global cities," *end Automob. Depend. How cities are Mov. beyond car-based Plan.*, pp. 33–76, 2015.
- [10] S. Gori, M. Nigro, and M. Petrelli, "Walkability indicators for pedestrian-friendly design," *Transp. Res. Rec.*, vol. 2464, no. 1, pp. 38–45, 2014.
- [11] T. Litman, "Determining optimal urban expansion, population and vehicle density, and housing types for rapidly growing cities," in *Proceedings of the World Conference on Transport Research, Shanghai, China*, 2016, pp. 10–15.

Material Alternatif Pengganti Beton Sebagai Pendukung Prinsip Berkelanjutan dalam Arsitektur

Syharozi¹, Fredyantoni F. Adji², I. Kadek Mardika³

^{1,2,3} Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal Masuk 08/05/2025 Tanggal Revisi 14/05/2025 Tanggal diterima 15/05/2025 Tanggal Publikas Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

Corresponding Author:

Nama *Author*: Syahrozi Fredyantoni F. Adji I. Kadek Mardika

Email: syahrozi@arch.upr.ac.id

ABSTRAK

Beton merupakan material konstruksi yang paling digunakan di dunia, namun produksinya memberikan kontribusi signifikan terhadap emisi karbon dioksida (CO₂) global. Dalam konteks arsitektur berkelanjutan, penting untuk mengeksplorasi alternatif pengganti beton yang lebih ramah lingkungan tanpa mengorbankan kekuatan struktural dan kepraktisan penggunaannya. Tulisan ini membahas berbagai material alternatif seperti beton geopolymer, bata tanah liat yang distabilisasi, bambu struktural, hingga hempcrete (campuran serat rami dan kapur) yang dinilai memiliki potensi besar sebagai pengganti beton konvensional. Kajian dilakukan dengan metode studi literatur terhadap jurnal ilmiah, laporan riset, dan dokumen teknis terkini. Hasil kajian menunjukkan bahwa selain mampu mengurangi jejak karbon, beberapa material alternatif juga menawarkan keunggulan seperti ketersediaan lokal, kemampuan daur ulang, serta adaptasi terhadap iklim tropis. Studi ini merekomendasikan integrasi material berkelanjutan ke dalam standar perencanaan dan konstruksi arsitektur, khususnya di Indonesia, sebagai bagian dari strategi mitigasi perubahan iklim dan pengembangan praktik bangunan hijau.

Kata Kunci : beton, material alternatif, arsitektur berkelanjutan, jejak karbon, hempcrete, beton geopolymer

Abstract

Concrete is the most widely used construction material in the world, but its production contributes significantly to global carbon dioxide (CO₂) emissions. In the context of sustainable architecture, it is important to explore alternatives to concrete that are more environmentally friendly without sacrificing structural strength and practicality. This paper discusses various alternative materials such as geopolymer concrete, stabilized clay bricks, structural bamboo, and hempcrete (a mixture of hemp fiber and lime) which are considered to have great potential as a substitute for conventional concrete. The study was conducted using a literature study method of scientific journals, research reports, and the latest technical documents. The results of the study show that in addition to being able to reduce carbon footprints, several alternative materials also offer advantages such as local availability, recyclability, and adaptation to tropical climates. This study recommends the

integration of sustainable materials into architectural planning and construction standards, especially in Indonesia, as part of a climate change mitigation strategy and the development of green building practices.

Keywords: concrete, alternative materials, sustainable architecture, carbon footprint, hempcrete, geopolymer concrete

PENDAHULUAN

Industri konstruksi merupakan salah satu sektor penyumbang emisi karbon terbesar di dunia, di mana beton sebagai material utama menyumbang sekitar 8% dari total emisi karbon dioksida global . Beton digunakan secara luas karena kemudahan produksi, kekuatan struktural yang tinggi, dan biaya yang relatif terjangkau. Namun, proses produksi semen – komponen utama dalam beton – membutuhkan energi yang besar dan menghasilkan emisi karbon dalam jumlah signifikan, terutama dari proses kalsinasi batu kapur dan penggunaan bahan bakar fosil [1] Dalam konteks pembangunan berkelanjutan, khususnya pada bidang arsitektur, muncul kebutuhan mendesak untuk mengevaluasi kembali material bangunan yang digunakan, termasuk mengembangkan dan menerapkan alternatif pengganti beton yang lebih ramah lingkungan. Arsitektur berkelanjutan menekankan pada efisiensi energi, pengurangan emisi, serta penggunaan material lokal yang memiliki dampak lingkungan rendah [2]. Oleh karena itu, pencarian material pengganti beton menjadi salah satu langkah strategis untuk menurunkan jejak karbon sektor konstruksi dan mencapai target mitigasi perubahan iklim global.

Beberapa alternatif material telah dikembangkan dan diuji dalam berbagai penelitian, antara lain beton geopolymer yang memanfaatkan limbah industri seperti fly ash dan slag sebagai pengikat [3], bata tanah liat yang distabilisasi dengan bahan alami atau semen rendah karbon [4], serta material berbasis biomassa seperti bambu dan hempcrete—campuran serat tanaman rami dan kapur yang memiliki sifat isolasi termal baik dan kapasitas penyerapan karbon [5]. Penggunaan material-material ini tidak hanya mengurangi emisi dari sisi produksi, tetapi juga mendukung prinsip circular economy melalui potensi daur ulang dan penggunaan sumber daya lokal.

Dalam konteks Indonesia sebagai negara tropis dengan kekayaan sumber daya hayati yang tinggi dan pertumbuhan sektor konstruksi yang pesat, pengembangan dan penerapan material alternatif pengganti beton menjadi relevan. Selain menawarkan efisiensi energi dan ketahanan terhadap iklim lokal, pendekatan ini juga mendukung kemandirian material dan penguatan ekonomi lokal. Berdasarkan latar belakang tersebut, tulisan ini bertujuan untuk mengkaji potensi beberapa material alternatif yang lebih ramah lingkungan sebagai pengganti beton dalam praktik arsitektur berkelanjutan, melalui studi literatur terhadap hasil-hasil penelitian terkini serta praktik implementasinya di berbagai negara.

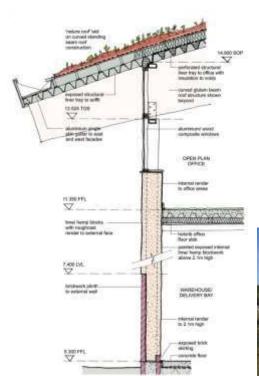
KAJIAN PUSTAKA

Beton merupakan material bangunan paling banyak digunakan di dunia, namun proses produksinya memberikan dampak lingkungan yang signifikan. Sekitar 0,9 ton CO₂ dilepaskan ke atmosfer untuk setiap ton semen yang diproduksi [6]. Proses kalsinasi batu kapur dan penggunaan bahan bakar fosil dalam pembakaran klinker menjadi penyumbang utama emisi tersebut [1]. Dalam perspektif arsitektur berkelanjutan, hal ini memicu kebutuhan untuk mencari alternatif material bangunan yang memiliki jejak karbon lebih rendah.

Vol. II, No. 01, Mei 2025

Arsitektur berkelanjutan mendorong penggunaan material yang memiliki dampak minimal terhadap lingkungan sepanjang siklus hidupnya, mulai dari proses ekstraksi bahan, produksi, penggunaan, hingga daur ulang. Kriteria material ramah lingkungan meliputi:

- a) Emisi karbon rendah.
- b) Kemampuan daur ulang atau biodegradasi.
- c) Sumber daya terbarukan atau lokal.
- d) Energi embodied yang rendah [7]


Beberapa material alternatif yang telah dikembangkan dan diuji secara ilmiah sebagai pengganti beton antara lain:

a. Beton Geopolymer

Beton geopolymer adalah material pengikat anorganik yang dibuat dari aktivasi alkali terhadap bahan-bahan pozzolan seperti fly ash, slag, atau kaolin. Berbeda dengan beton Portland, beton geopolymer tidak memerlukan klinker sehingga mengurangi emisi CO₂ hingga 80% [3]. Proyek nyata di Queensland yang menggunakan beton geopolymer berbasis fly ash dan slag, yaitu Brisbane West Wellcamp Airport di Toowoomba. Bandara ini merupakan proyek terbesar di dunia yang menggunakan beton geopolymer, dengan sekitar 40.000 m³ (100.000 ton) beton geopolymer digunakan dalam konstruksinya. Beton ini dikembangkan oleh perusahaan Wagners dengan nama dagang Earth Friendly Concrete (EFC). Penggunaan beton geopolymer dalam proyek ini menunjukkan pengurangan emisi CO₂ yang signifikan dibandingkan dengan beton konvensional [8].

b. Hempcrete (Beton Rami)

Hempcrete merupakan material komposit yang terbuat dari serat batang tanaman rami (hemp hurds) dicampur dengan kapur (*lime-based binder*). Material ini ringan, isolatif, memiliki kemampuan menyerap karbon, serta cocok untuk iklim tropis karena kelembapan yang seimbang [5]. Adnams Distribution Centre di Suffolk, Inggris, menggunakan hempcrete dalam konstruksinya dan merupakan salah satu proyek perintis dalam penerapan material berbasis biomassa di Inggris.

Gambar 1 Material Atap Hijau pada Adnams Distribution Centre di Suffolk, Inggris [9]

Bangunan ini dirancang oleh Aukett Swanke dan selesai dibangun pada tahun 2006, dengan luas sekitar 5.000 m². Fitur utamanya meliputi atap hijau sedum seluas 0,6 hektar, penggunaan glulam beams sepanjang 42 meter, serta sistem pengelolaan air dan energi yang ramah lingkungan.

Gambar 2 Detail Balok Glulam yang Menjorok Ke Bangunan sebagai Naungan Matahari [9]

Bangunan ini mencapai penghematan energi sebesar lebih dari £50.000 per tahun berkat kinerja termal atap hijaunya, yang membantu mengatur suhu sepanjang tahun. Bangunan ini berhasil menyerap sekitar 150 ton CO₂ melalui penggunaan hempcrete, dibandingkan dengan konstruksi bata dan mortar konvensional yang dapat menghasilkan hingga 600 ton CO₂ [9].

c. Kayu Lokal, Bambu, Dan Barrel Plastik Daur Ulang

Makoko Floating School di Lagos, Nigeria, adalah proyek nyata yang dirancang oleh arsitek Kunlé Adeyemi dari firma NLÉ dan dibangun pada tahun 2013. Bangunan ini merupakan prototipe struktur terapung yang dirancang untuk komunitas perairan Makoko, dengan tujuan menyediakan ruang pendidikan yang berkelanjutan dan adaptif terhadap kondisi lingkungan setempat [10].

Gambar 3 Makoko Floating School [10]

Material utama yang digunakan dalam konstruksi Makoko Floating School adalah **kayu lokal**, **bambu**, dan **barrel plastik daur ulang** sebagai pelampung. Struktur bangunan berbentuk segitiga Aframe setinggi 10 meter dengan dasar 10x10 meter, terdiri dari tiga tingkat: area bermain terbuka di tingkat pertama, ruang kelas di tingkat kedua, dan ruang serbaguna di tingkat ketiga. Fitur berkelanjutan lainnya termasuk panel surya, sistem penampungan air hujan, dan toilet kompos [10].

KESIMPULAN

Kebutuhan akan pembangunan yang berkelanjutan dalam bidang arsitektur mendorong pencarian alternatif material konstruksi yang ramah lingkungan. Beton, meskipun masih menjadi material utama dalam industri konstruksi, memiliki dampak lingkungan yang besar akibat emisi karbon tinggi dalam proses produksinya. Oleh karena itu, pengembangan dan penerapan material alternatif seperti beton geopolymer, hempcrete, dan bambu struktural menjadi semakin relevan, terutama dalam konteks mitigasi perubahan iklim dan efisiensi sumber daya. Makoko Floating School adalah proyek arsitektur nyata yang menggunakan kayu, bambu, dan barrel plastik sebagai material utama, bukan bata tanah. Proyek ini menjadi contoh inovatif dalam desain arsitektur berkelanjutan yang responsif terhadap lingkungan dan kebutuhan komunitas lokal. Kajian ini menunjukkan bahwa material-material tersebut tidak hanya memiliki potensi untuk mengurangi jejak karbon, tetapi juga menawarkan keunggulan dalam hal keberlanjutan, efisiensi energi, dan adaptabilitas terhadap iklim lokal, khususnya di wilayah tropis seperti Indonesia. Beberapa studi kasus nyata di berbagai negara menunjukkan keberhasilan penerapan alternatif ini dalam skala bangunan hunian maupun fasilitas umum. Namun, untuk mendorong implementasi yang lebih luas, diperlukan dukungan dalam bentuk regulasi teknis, standar sertifikasi, insentif kebijakan, serta pendidikan dan pelatihan bagi para pelaku industri konstruksi. Sinergi antara akademisi, pemerintah, pengembang, dan masyarakat menjadi kunci dalam mempercepat transisi menuju praktik arsitektur yang lebih berkelanjutan.

Dengan mengadopsi material pengganti beton yang lebih ramah lingkungan, arsitektur tidak hanya dapat berkontribusi terhadap pengurangan emisi global, tetapi juga menghadirkan solusi desain yang kontekstual, inovatif, dan berkelanjutan bagi masa depan lingkungan binaan.

DAFTAR PUSTAKA

- [1] K. L. Scrivener, V. M. John, and E. M. Gartner, "Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry," *Cem. Concr. Res.*, vol. 114, pp. 2–26, 2018.
- [2] B. Vale and R. Vale, "Green architecture: design for a sustainable future," (No Title), 1991.
- [3] J. Davidovits, *Geopolymer chemistry and applications*. Geopolymer Institute, 2008.
- [4] P. J. Walker, "Strength and erosion characteristics of earth blocks and earth block masonry," *J. Mater. Civ. Eng.*, vol. 16, no. 5, pp. 497–506, 2004.
- [5] S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, and L. Goudet, "Mechanical and thermal properties of lime and hemp concrete ('hempcrete') manufactured by a projection process," *Constr. Build. Mater.*, vol. 22, no. 10, pp. 2116–2123, 2008.
- [6] A. T. B. Torres, V. V. Barros, R. M. Neckel, and C. A. Lindino, "ASSESSING THE IMPACT OF CEMENT PRODUCTION ON CLIMATE CHANGE: AN INTEGRATIVE REVIEW."
- [7] M. Asif, T. Muneer, and R. Kelley, "Life cycle assessment: A case study of a dwelling home in Scotland," *Build. Environ.*, vol. 42, no. 3, pp. 1391–1394, 2007.
- [8] "Geopolymer cement and Geopolymer Concrete," *Geopolymer Institure*, 2006. https://www.geopolymer.org/applications/geopolymer-cement/?utm_source=chatgpt.com (accessed May 14, 2025).
- [9] A. Swanke, "Adnams Distribution Centre," 2025. https://www.aukettswanke.com/projects/adnams-distribution-centre/?utm_source=chatgpt.com (accessed May 14, 2025).
- [10] ArchEyes, "Makoko Floating School," 2016. https://archeyes.com/makoko-floating-school/?utm source=chatgpt.com (accessed May 14, 2025).

Peran Ruang Transisi dalam Meningkatkan Privasi dan Kenyamanan Thermal pada Rumah Tropis

Indrabakti Sangalang¹, Joni Wahyubuana Usop² , Rony Setya Siswadi³ ,Onie D. Sanitha⁴
^{1,2,3,4} Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal Masuk 07/05/2025 Tanggal diterima 15/05/2025 Tanggal Publikas Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

ABSTRAK

Perubahan pola perancangan rumah tropis modern sering kali mengesampingkan elemen-elemen tradisional seperti teras, selasar, dan taman depan, yang sebenarnya memiliki peran penting dalam menciptakan kenyamanan termal dan menjaga privasi. Padahal, dalam konteks iklim tropis yang lembap dan panas, ruang transisi menjadi peredam alami terhadap suhu dan intensitas cahaya matahari, sekaligus sebagai buffer sosial antara ruang publik dan privat. Penelitian ini bertujuan untuk mengevaluasi efektivitas ruang transisi dalam rumah tinggal tropis sebagai strategi pasif peningkat kenyamanan termal dan privasi pengguna. Metode yang digunakan adalah studi kualitatif melalui observasi langsung, pengukuran temperatur dan kelembapan di beberapa rumah tinggal tropis yang memiliki dan tidak memiliki ruang transisi di Kota Palangka Raya, serta wawancara dengan penghuni untuk mengetahui persepsi mereka terhadap kenyamanan dan privasi. Hasil penelitian menunjukkan bahwa keberadaan ruang transisi seperti teras dan taman depan mampu menurunkan suhu ruang dalam hingga 2-3°C dibandingkan rumah yang tidak memilikinya, serta meningkatkan persepsi kenyamanan dan privasi hingga 75% menurut responden. Temuan ini menguatkan pentingnya mempertahankan dan mengadaptasi elemen ruang transisi dalam perancangan rumah tropis modern sebagai pendekatan arsitektur pasif yang responsif terhadap iklim dan perilaku pengguna.

Kata Kunci : ruang transisi, rumah tropis, kenyamanan termal, privasi, desain pasif

Corresponding Author:

Nama Author: Indrabakti Sangalang Joni Wahyubuana Usop Rony Setya Siswadi Onie D. Sanitha

Email: indrabakti.sangalang@arch. upr.ac.id

Abstract

Changes in the design patterns of modern tropical houses often ignore traditional elements such as terraces, hallways, and front gardens, which actually have an important role in creating thermal comfort and maintaining privacy. In fact, in the context of a humid and hot tropical climate, transitional spaces become natural dampers for temperature and sunlight intensity, as well as social buffers between public and private spaces. This study aims to evaluate the effectiveness of transitional spaces in tropical houses as a passive strategy to increase thermal comfort and user privacy. The method used is a qualitative study through direct observation, temperature and humidity measurements in several tropical houses that have and do not have transitional spaces in Palangka

Vol. II, No. 01, Mei 2025

E-ISSN: in progress

Raya City, and interviews with residents to determine their perceptions of comfort and privacy. The results of the study show that the presence of transitional spaces such as terraces and front gardens can reduce the indoor temperature by 2–3°C compared to houses that do not have them, and increase the perception of comfort and privacy by up to 75% according to respondents. These findings reinforce the importance of maintaining and adapting transitional space elements in the design of modern tropical houses as a passive architectural approach that is responsive to climate and user behavior.

Keywords: transitional space, tropical houses, thermal comfort, privacy, passive design.

PENDAHULUAN

Perancangan rumah tinggal di wilayah tropis dewasa ini mengalami perubahan yang cukup signifikan, terutama dalam hal pemanfaatan elemen-elemen tradisional seperti teras, selasar, dan taman depan. Seiring berkembangnya gaya hidup modern dan kecenderungan efisiensi lahan, banyak rumah tropis saat ini dibangun tanpa mempertimbangkan fungsi ruang transisi tersebut. Padahal, dalam konteks iklim tropis yang lembap dan panas, ruang transisi memainkan peran strategis sebagai bagian dari pendekatan desain pasif untuk meningkatkan kenyamanan termal dan menjaga privasi penghuni [1]

Ruang transisi seperti teras dan selasar berfungsi sebagai zona penyangga antara lingkungan luar dan dalam bangunan. Elemen ini mampu menyaring radiasi matahari, mengurangi fluktuasi suhu, serta memperlambat aliran udara panas langsung ke ruang dalam [2]. Selain itu, ruang transisi juga berfungsi sebagai peredam sosial, menciptakan batas antara ruang publik dan privat, sehingga memberikan rasa aman dan nyaman bagi penghuni [3]. Dalam praktiknya, keberadaan ruang transisi kerap kali diabaikan dalam desain rumah-rumah modern, terutama pada perumahan massal, yang lebih menekankan efisiensi biaya dan lahan dibanding kenyamanan psikologis dan iklim mikro. Menurut Ching [4], ruang transisi adalah bagian penting dalam membentuk pengalaman ruang yang berlapis. Ia menjadi penanda perubahan atmosfer, cahaya, dan suasana dari satu ruang ke ruang lain. Ruang ini sering digunakan untuk menciptakan jeda visual dan emosional dalam pergerakan pengguna.

Beberapa penelitian menunjukkan bahwa rumah tinggal yang mengintegrasikan ruang transisi menunjukkan performa termal yang lebih baik dan memiliki tingkat kepuasan pengguna yang lebih tinggi dibanding rumah yang tidak memilikinya [5]. Sayangnya, studi yang mengkaji hubungan antara ruang transisi, kenyamanan termal, dan persepsi penghuni di kawasan tropis, khususnya di Kalimantan Tengah, masih terbatas. Hal inilah yang melatarbelakangi pentingnya dilakukan penelitian ini, guna mengevaluasi peran ruang transisi sebagai strategi desain pasif yang kontekstual, hemat energi, dan sesuai dengan perilaku serta kebutuhan penghuni rumah tropis.

KAJIAN PUSTAKA

Ruang transisi merupakan elemen arsitektural yang berfungsi sebagai penghubung antara ruang luar dan ruang dalam, serta berperan dalam mengatur sirkulasi, pencahayaan, ventilasi, dan kontrol visual. Dalam konteks rumah tropis, ruang transisi seperti teras, selasar, dan taman dalam (courtyard) menjadi elemen penting dalam menciptakan kenyamanan termal alami dan menjaga privasi penghuni [2].

Ruang transisi adalah ruang perantara yang menghubungkan antara ruang dalam dan ruang luar. Ruang ini sering kali memiliki fungsi campuran, baik sebagai zona penyesuaian iklim maupun zona interaksi sosial. Contoh ruang transisi dapat berupa teras, selasar, balkon, foyer, taman dalam yang berfungsi sebagai perpindahan ruang, kontrol visual dan termal, serta peredam sosial [6]. Elemen ini juga sering menjadi tempat untuk aktivitas semi-private seperti menerima tamu informal atau tempat bersantai keluarga, sehingga memiliki nilai fungsional dan sosial yang tinggi [3]. Kenyamanan termal adalah kondisi ketika pengguna merasa nyaman terhadap suhu udara, kelembapan, sirkulasi udara, dan radiasi panas di lingkungan sekitarnya. Pada iklim tropis yang panas dan lembap, pendekatan desain pasif seperti pengaturan orientasi bangunan, penggunaan ventilasi silang, material bangunan berpori, dan penciptaan ruang transisi sangat krusial untuk mencapai kenyamanan termal [7]. Ruang transisi berfungsi sebagai buffer termal, yang dapat menurunkan suhu ruang dalam hingga 2–3°C karena penghalangan radiasi langsung dan peningkatan sirkulasi udara [1]

Privasi dalam konteks rumah tinggal berkaitan erat dengan kontrol visual, akustik, dan fisik terhadap interaksi dari luar ke dalam rumah. Dalam rumah tropis, privasi sering dikompromikan karena keterbukaan desain dan kebutuhan ventilasi alami. Oleh karena itu, ruang transisi seperti taman depan, pagar hijau, dan dinding penyaring menjadi alat penting untuk menciptakan lapisan privasi tanpa mengorbankan sirkulasi udara dan pencahayaan alami [8]. Beberapa studi kasus menunjukkan efektivitas ruang transisi dalam rumah tropis. Misalnya, penelitian oleh Paryoko [5] di Surabaya menunjukkan bahwa rumah dengan teras dan selasar memiliki tingkat kenyamanan termal dan privasi pengguna yang lebih tinggi dibanding rumah tanpa elemen tersebut. Di Yogyakart, elemen tradisional seperti joglo atau serambi dapat diadaptasi secara modern dalam rumah urban untuk tetap mempertahankan fungsi ruang transisi [9].

Dalam praktik arsitektur, ruang transisi memiliki beberapa peran strategis:

- 1) Pengatur iklim mikro *(climate moderator):* mengurangi beban panas langsung dari luar ke dalam [2]
- 2) Peredam visual dan akustik: memberikan zona penyesuaian untuk menjaga privasi penghuni dari intervensi luar [3].
- 3) Zona sosial informal: menjadi area penerima tamu, ruang duduk ringan, atau tempat interaksi spontan.
- 4) Buffer spasial dan psikologis: menciptakan jeda antara aktivitas publik dan aktivitas pribadi dalam rumah.

Beberapa jenis ruang transisi yang lazim dalam arsitektur tropis maupun modern, antara lain:

- 1) Teras/serambi depan (veranda): ruang semi-terbuka yang melindungi dari hujan dan sinar matahari, serta menjadi tempat menerima tamu secara informal.
- 2) Selasar (corridor/open hallway): penghubung antar-ruang atau bangunan, sering kali dilindungi atap namun terbuka di samping untuk ventilasi alami.
- 3) Foyer: ruang kecil setelah pintu masuk utama sebelum memasuki ruang utama (ruang tamu atau ruang keluarga).
- 4) Taman dalam (inner courtyard): ruang terbuka di tengah bangunan yang berfungsi sebagai sumber pencahayaan alami dan sirkulasi udara.

Pada kawasan beriklim tropis, ruang transisi menjadi elemen vital dalam pendekatan desain pasif. Elemen ini membantu menciptakan keseimbangan suhu dengan menghindari panas langsung serta memungkinkan ventilasi silang. Dalam studi oleh Feriadi & Wong [1] ruang-ruang seperti serambi dan selasar terbukti menurunkan suhu ruang dalam secara signifikan. Sementara Ruang dalam hal

dimensi sosial budaya, transisi juga berkaitan dengan nilai-nilai sosial dan budaya misalnya dalam arsitektur rumah tradisional Jawa, serambi berfungsi sebagai ruang pertemuan, ruang tamu, sekaligus pengontrol batas antara tamu dan keluarga inti. Pemahaman budaya lokal sangat penting agar ruang transisi tidak hanya efektif secara teknis, tetapi juga kontekstual secara sosial [8]

KESIMPULAN

Ruang transisi memiliki peran penting dalam menciptakan kenyamanan termal dan meningkatkan tingkat privasi pada rumah tropis. Berdasarkan studi terhadap objek-objek rumah tropis, ditemukan bahwa elemen-elemen ruang transisi seperti teras, selasar, dan taman dalam mampu mengatur sirkulasi udara, mengurangi panas langsung, serta menciptakan zona penyangga antara ruang luar dan ruang dalam. Keberadaan ruang transisi juga berkontribusi dalam mengontrol pencahayaan alami dan melindungi ruang privat dari pengamatan langsung dari luar. Secara umum, integrasi ruang transisi dalam desain rumah tropis berperan sebagai strategi pasif yang efektif untuk menghadapi kondisi iklim tropis yang panas dan lembap. Penggunaan ruang transisi tidak hanya memperbaiki kualitas termal bangunan, tetapi juga meningkatkan kualitas hunian dari sisi psikologis dan sosial dengan menciptakan batas yang jelas namun fleksibel antara ruang publik dan privat. Oleh karena itu, perancangan ruang transisi perlu dipertimbangkan secara matang dalam desain rumah tropis, baik dari aspek tata letak, orientasi, maupun material, guna mendukung kenyamanan dan privasi penghuni secara menyeluruh.

DAFTAR PUSTAKA

- [1] H. Feriadi and N. H. Wong, "Thermal comfort for naturally ventilated houses in Indonesia," *Energy Build.*, vol. 36, no. 7, pp. 614–626, 2004.
- [2] K. Yeang, J. Reynolds, V. Olgyay, and D. Lyndon, "Design with Climate: Bioclimatic Approach to Architectural Regionalism-New and expanded Edition," 2015.
- [3] M. Karrholm, *Retailing Space Architecture, Retail and the Territorisation of Public Space*. USA: Ashgate Publishing Limited, 2012.
- [4] F. D. K. Ching, Architecture: Form Space and Order, 3rd ed. John Wiley & Sons Ltd, 2007.
- [5] V. G. P. J. Paryoko, "Kajian Penerapan Arsitektur Bioklimatik pada Voza Office Surabaya," WASTU J. Wacana Sains Teknol., vol. 4, no. 2, pp. 125–139, 2023.
- [6] P. Pittaluga, "Pioneering urban practices in transition spaces," *City, Territ. Archit.*, vol. 7, no. 1, p. 18, 2020.
- [7] B. Givoni, *Passive low energy cooling of buildings*. John Wiley & Sons, 1994.
- [8] A. M. Nugroho, *Arsitektur tropis Nusantara: rumah tropis Nusantara kontemporer*. Universitas Brawijaya Press, 2018.
- [9] S. Ritohardoyo *et al.*, "Patrawidya Vol. 15 No. 4," *Seri Pnb. Penelit. Sej. dan budaya*, vol. 15, no. 4, pp. 505–666, 2014.

Pengaruh BIM dalam Percepatan Proyek Konstruksi

Fredyantoni F. Adji¹, Theo Fransisco²

^{1,2,} Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal Masuk 02/05/2025 Tanggal Revisi 0/05/2025 Tanggal diterima 15/05/2025 Tanggal Publikas Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

ABSTRAK

Building Information Modeling (BIM) merupakan inovasi teknologi yang semakin banyak diadopsi dalam industri konstruksi karena kemampuannya dalam meningkatkan efisiensi proyek. Salah satu manfaat utama BIM adalah kemampuannya dalam mempercepat pelaksanaan proyek melalui koordinasi antar-disiplin yang lebih baik, deteksi dini terhadap konflik desain, serta pemodelan 3D yang komprehensif. Penelitian ini bertujuan untuk menganalisis pengaruh penerapan BIM terhadap percepatan waktu pelaksanaan proyek konstruksi, dengan metode studi literatur dan studi kasus pada beberapa proyek di Indonesia yang telah menggunakan BIM. Hasil kajian menunjukkan bahwa implementasi BIM dapat mempercepat durasi proyek antara 10-30%, terutama pada tahap perencanaan dan koordinasi teknis, dibandingkan dengan metode konvensional. Temuan ini menegaskan bahwa BIM bukan hanya alat visualisasi, tetapi juga strategi manajemen proyek yang efektif dalam mempercepat waktu dan menurunkan keterlambatan. Penelitian ini merekomendasikan penerapan BIM sejak tahap awal proyek, serta pelatihan intensif bagi pelaku konstruksi guna memaksimalkan manfaat teknologi ini.

E-ISSN: in progress

Kata Kunci : Building Information Modeling (BIM), percepatan proyek, manajemen konstruksi, efisiensi waktu, teknologi konstruksi

Corresponding Author:

Nama *Author* : Fredyantoni F. Adji Theo Fransisco

Email:

fredyantoni@arch.upr.ac.id

Abstract

Building Information Modeling (BIM) is a technological innovation that is increasingly being adopted in the construction industry due to its ability to improve project efficiency. One of the main benefits of BIM is its ability to accelerate project implementation through better interdisciplinary coordination, early detection of design conflicts, and comprehensive 3D modeling. This study aims to analyze the effect of BIM implementation on accelerating construction project implementation time, using literature study methods and case studies on several projects in Indonesia that have used BIM. The results of the study show that BIM implementation can accelerate project duration by 10-30%, especially at the planning and technical coordination stages, compared to conventional methods. This finding confirms that BIM is not only a visualization tool, but also an effective project management strategy in accelerating time and reducing potential delays. This study recommends the implementation of BIM from

Vol. II, No. 01, Mei 2025

E-ISSN: in progress

the early stages of the project, as well as intensive training for construction actors to maximize the benefits of this technology.

Keywords: Building Information Modeling (BIM), project acceleration, construction management, time efficiency, construction technology

PENDAHULUAN

Industri konstruksi merupakan sektor yang kompleks dan melibatkan banyak pihak dengan berbagai disiplin ilmu. Keterlambatan dalam penyelesaian proyek masih menjadi tantangan umum yang berdampak pada pembengkakan biaya, penurunan kualitas, serta ketidakpuasan pengguna jasa. Menurut Barbosa [1] sekitar 98% proyek konstruksi besar mengalami keterlambatan atau melebihi anggaran yang direncanakan. Hal ini mengindikasikan perlunya pendekatan baru dalam pengelolaan proyek yang lebih efisien dan terintegrasi. Dalam beberapa dekade terakhir, *Building Information Modeling* (BIM) telah muncul sebagai solusi teknologi yang mampu menjawab tantangan tersebut. BIM merupakan metode berbasis digital untuk perencanaan, desain, konstruksi, dan pengelolaan bangunan dengan menggunakan model informasi tiga dimensi yang terintegrasi [2]. BIM tidak hanya menampilkan geometri bangunan, tetapi juga mengandung informasi detail terkait material, jadwal konstruksi (4D), estimasi biaya (5D), serta siklus hidup bangunan (6D–7D), sehingga memungkinkan kolaborasi lintas disiplin yang lebih baik sejak tahap awal proyek.

Salah satu manfaat penting dari penerapan BIM adalah kemampuannya dalam mempercepat pelaksanaan proyek konstruksi. Dengan kemampuan koordinasi desain secara real-time dan deteksi dini terhadap konflik antar elemen struktur dan sistem (clash detection), BIM dapat mengurangi waktu yang dibutuhkan untuk revisi dan klarifikasi dokumen teknis [3]. Penelitian oleh Bryde [4] menunjukkan bahwa BIM mampu meningkatkan efisiensi waktu pelaksanaan proyek hingga 30% melalui optimalisasi komunikasi dan pengambilan keputusan. Di Indonesia, penerapan BIM mulai mendapatkan perhatian dalam beberapa tahun terakhir, baik pada proyek-proyek pemerintah maupun swasta. Meski demikian, implementasinya masih menghadapi berbagai kendala seperti kurangnya sumber daya manusia yang terlatih, resistensi terhadap perubahan, dan minimnya regulasi yang mendorong penggunaan BIM secara menyeluruh [5]. Oleh karena itu, penting untuk mengkaji sejauh mana BIM telah memberikan pengaruh terhadap percepatan proyek konstruksi, khususnya dalam konteks Indonesia. Artikel ini bertujuan untuk menganalisis pengaruh penerapan BIM terhadap percepatan waktu pelaksanaan proyek konstruksi melalui studi literatur dan studi kasus pada beberapa proyek yang telah mengadopsi BIM. Diharapkan kajian ini dapat memberikan kontribusi bagi pemangku kepentingan dalam mendorong penggunaan teknologi digital dalam manajemen konstruksi secara lebih luas dan efektif.

KAJIAN PUSTAKA

Building Information Modeling (BIM) adalah pendekatan berbasis teknologi digital dalam perencanaan, desain, konstruksi, dan pengelolaan bangunan yang menggunakan representasi digital tiga dimensi yang cerdas dan terintegrasi. BIM tidak hanya menampilkan bentuk geometri bangunan, tetapi juga menyimpan informasi terkait material, biaya, jadwal konstruksi, hingga siklus hidup bangunan [2]. BIM berfungsi sebagai platform kolaboratif antara berbagai pihak dalam proyek konstruksi—arsitek, insinyur, kontraktor, pemilik, dan manajer proyek—untuk mengakses dan memperbarui data secara real-time. Ini sangat berbeda dengan pendekatan konvensional berbasis gambar 2D yang terpisah dan statis [6].

BIM berkembang dalam beberapa tingkat kedalaman data dan kolaborasi, sering kali disebut sebagai *Level of BIM* dan *Dimensi BIM*, yaitu:

- a) BIM 3D: Visualisasi spasial bangunan (desain geometri).
- b) BIM 4D: Integrasi dengan waktu/jadwal konstruksi (scheduling).
- c) BIM 5D: Integrasi dengan estimasi biaya (cost estimation).
- d) BIM 6D: Analisis keberlanjutan dan efisiensi energi.
- e) BIM 7D: Pengelolaan fasilitas dan siklus hidup bangunan (facility management). [7]

Penggunaan dimensi BIM yang lebih tinggi membantu pengambilan keputusan yang lebih cerdas dan mengurangi potensi kesalahan selama proyek berlangsung. Salah satu manfaat utama penerapan BIM adalah peningkatan efisiensi waktu melalui:

- a) Clash Detection: BIM memungkinkan deteksi tabrakan antar elemen desain (misalnya antara struktur dan sistem mekanikal) sejak awal, sehingga mengurangi konflik saat pelaksanaan di lapangan [3].
- b) Integrasi Jadwal (4D BIM): Integrasi antara model 3D dengan jadwal proyek memungkinkan visualisasi progres konstruksi secara simulatif, yang membantu perencanaan dan kontrol waktu secara lebih akurat [8]
- c) Koordinasi Multidisiplin: Kolaborasi antar tim desain, teknik, dan pelaksana dapat dilakukan secara sinkron, mengurangi waktu tunggu antar tahapan proyek [4].
- d) Reduksi *Rework*: Kesalahan desain dapat diidentifikasi dan diperbaiki lebih awal, sehingga waktu untuk perbaikan (*rework*) selama konstruksi dapat diminimalisasi.

Dalam sebuah studi oleh Bryde, Broquetas, dan Volm [4], disebutkan bahwa BIM berkontribusi terhadap peningkatan efisiensi waktu hingga 30% pada proyek konstruksi yang menggunakan BIM dibandingkan metode tradisional.

Implementasi BIM untuk Percepatan Proyek

Beberapa studi dan laporan menunjukkan penerapan nyata BIM yang berhasil mempercepat proyek, antara lain:

- a) Proyek MRT Jakarta: Penerapan BIM oleh PT MRT Jakarta untuk dokumentasi dan koordinasi desain terbukti mempercepat tahapan konstruksi dan menghindari konflik antar sistem. BIM juga digunakan untuk pemeliharaan dan pengelolaan aset infrastruktur [9].
- b) Singapore Government Building Projects: Pemerintah Singapura mewajibkan BIM Level 2 untuk proyek publik sejak 2015. Studi oleh Wong [10] menunjukkan bahwa BIM membantu menghemat waktu proyek sebesar 15–25% pada proyek-proyek pemerintah. Sejak 1 Juli 2015, pemerintah Singapura mewajibkan penggunaan Building Information Modeling (BIM) untuk e-submission proyek bangunan baru dengan luas lantai kotor (GFA) lebih dari 5.000 m². Kebijakan ini merupakan bagian dari upaya pemerintah untuk meningkatkan produktivitas konstruksi melalui digitalisasi [11].

Terdapat beberapa contoh nyata dan laporan resmi yang menunjukkan bahwa implementasi Building Information Modeling (BIM) secara signifikan mempercepat durasi proyek konstruksi, termasuk di Singapura. Proyek pembangunan Terminal 4 Bandara Changi menggunakan BIM secara intensif. Hasilnya, proyek ini diselesaikan tepat waktu dan sesuai anggaran, berkat optimalisasi alokasi sumber daya, pengurangan limbah, dan minimisasi penundaan [12].

Gambar 1 Pemanfaatan VR untuk Tinjauan Proyek [13]

Fortis Construction menerapkan tinjauan BIM berbasis realitas virtual (VR) dalam pembangunan pusat data di Singapura. Pendekatan ini memungkinkan mereka menghindari pekerjaan ulang senilai \$3 juta dalam waktu 3 bulan, menunjukkan efisiensi signifikan dalam proses konstruksi [13].

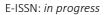
Gambar 2 Menggunakan BIM VR [13]

Implementasi BIM di Singapura telah menunjukkan hasil nyata dalam mempercepat durasi proyek konstruksi dan meningkatkan efisiensi secara keseluruhan. Secara teoritis, BIM telah terbukti sebagai pendekatan yang efektif dalam mempercepat proyek konstruksi dengan memfasilitasi koordinasi, mengurangi kesalahan desain, serta memungkinkan perencanaan dan pengawasan jadwal secara akurat. Dengan meningkatnya kompleksitas proyek dan keterbatasan waktu, BIM menjadi kebutuhan mendesak dalam sistem manajemen konstruksi modern, termasuk di Indonesia. Implementasi Building Information Modeling (BIM) telah terbukti secara signifikan mempercepat durasi proyek konstruksi, terutama pada fase awal seperti perencanaan, koordinasi teknis, dan pengambilan keputusan. Efisiensi waktu ini didorong oleh kemampuan BIM dalam

memfasilitasi kolaborasi lintas disiplin melalui model digital terintegrasi yang memungkinkan semua pihak—arsitek, insinyur, kontraktor, dan pemilik proyek—bekerja pada satu sumber informasi yang sama (single source of truth). Dalam studi oleh Azhar [3], disebutkan bahwa salah satu keunggulan utama BIM adalah deteksi dini terhadap konflik desain (clash detection), yang secara langsung mengurangi waktu untuk revisi dan koordinasi ulang yang biasa terjadi dalam pendekatan tradisional. Azhar [3] melaporkan bahwa proyek-proyek yang menggunakan BIM menunjukkan penurunan waktu penyelesaian sebesar 15–25% dibandingkan proyek yang tidak menggunakan BIM, terutama karena berkurangnya pekerjaan ulang (rework) dan waktu tunggu antar tim.

Sementara itu, Bryde et al. [4] dalam studi mereka terhadap proyek konstruksi di Inggris menemukan bahwa BIM mampu meningkatkan efisiensi proyek hingga 30%, khususnya melalui integrasi jadwal proyek (4D BIM) dan manajemen informasi yang lebih baik. Mereka mencatat bahwa kolaborasi yang lebih terstruktur antara konsultan dan kontraktor melalui model BIM mengurangi durasi penyusunan dokumen teknis dan mempercepat persetujuan gambar kerja. Temuan serupa juga diungkapkan oleh Barlish dan Sullivan [14] yang membandingkan proyek perkantoran dengan dan tanpa BIM. Mereka menyimpulkan bahwa proyek yang menerapkan BIM mengalami percepatan waktu perencanaan hingga 21% dan pengurangan durasi konstruksi sebesar 15%, dengan peningkatan koordinasi dan eliminasi konflik sebagai faktor kunci. Di tingkat nasional, laporan oleh PT MRT Jakarta [9] mencatat bahwa penerapan BIM dalam pembangunan jalur MRT fase 1 telah mempercepat proses koordinasi teknis antara kontraktor sipil dan mekanikal-elektrikal, serta mengurangi waktu pengambilan keputusan teknis akibat visualisasi yang lebih akurat dari model 3D. Ini merupakan studi kasus nyata bagaimana BIM memberi dampak langsung pada efisiensi waktu di lapangan.

Selain aspek teknis, BIM juga membantu manajer proyek dalam membuat simulasi jadwal konstruksi (4D BIM), yang memungkinkan pemodelan urutan pekerjaan dan identifikasi potensi hambatan sebelum pekerjaan dimulai. Menurut Hardin dan McCool [8], pemanfaatan simulasi waktu dalam BIM membantu tim proyek mengantisipasi kemacetan proses dan mengoptimalkan logistik proyek, yang berdampak langsung pada percepatan durasi proyek secara keseluruhan.


KESIMPULAN

Berdasarkan kajian teoritis, Building Information Modeling (BIM) terbukti sebagai pendekatan revolusioner yang mampu mempercepat durasi proyek konstruksi secara signifikan. Melalui integrasi informasi geometri, jadwal, biaya, dan manajemen fasilitas dalam satu platform digital, BIM mendorong efisiensi koordinasi lintas disiplin dan deteksi dini terhadap potensi konflik desain. Dimensi-dimensi BIM seperti 4D (waktu) dan 5D (biaya) memberikan nilai tambah dalam pengambilan keputusan serta pengendalian proyek secara real-time. Beberapa studi menunjukkan bahwa penggunaan BIM dapat mengurangi waktu proyek hingga 30%, khususnya pada fase perencanaan dan pelaksanaan teknis. Studi kasus seperti MRT Jakarta dan proyek-proyek publik di Singapura memperlihatkan bahwa penerapan BIM tidak hanya berdampak pada percepatan waktu, tetapi juga pada peningkatan kualitas hasil akhir dan pengurangan pekerjaan ulang (rework). Oleh karena itu, BIM bukan sekadar alat bantu desain, melainkan sistem manajemen proyek terintegrasi yang sangat relevan untuk diterapkan dalam industri konstruksi masa kini.

DAFTAR PUSTAKA

[1] F. Barbosa, J. Woetzel, and J. Mischke, "Reinventing construction: A route of higher productivity," McKinsey Global Institute, 2017.

- [2] C. M. Eastman, BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons, 2011.
- [3] S. Azhar, "Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry," *Leadersh. Manag. Eng.*, vol. 11, no. 3, pp. 241–252, 2011.
- [4] D. Bryde, M. Broquetas, and J. M. Volm, "The project benefits of building information modelling (BIM)," *Int. J. Proj. Manag.*, vol. 31, no. 7, pp. 971–980, 2013.
- [5] F. C. Nugrahini and T. A. Permana, "Building Information Modelling (BIM) dalamTahapan Desain dan Konstruksi di Indonesia, Peluang Dan Tantangan (Studi Kasus Perluasan T1 Bandara Juanda Surabaya)," *Agregat*, vol. 5, no. 2, pp. 459–467, 2020.
- [6] E. A. Pärn, D. J. Edwards, and M. C. P. Sing, "The building information modelling trajectory in facilities management: A review," *Autom. Constr.*, vol. 75, pp. 45–55, 2017.
- [7] R. Sood and B. Laishram, "Challenges in implementation of 7D-BIM for infrastructure asset management: A systematic review," *Constr. Econ. Build.*, vol. 24, no. 3, pp. 95–117, 2024.
- [8] B. Hardin and D. McCool, *BIM and construction management: proven tools, methods, and workflows*. John Wiley & Sons, 2015.
- [9] PT. MRT Jakarta, "MRT Jakarta Annual Report 2020," Jakarta. [Online]. Available: https://jakartamrt.co.id/id/annual-report/mrt-jakarta-annual-report-2020.
- [10] A. K. D. Wong, F. K. W. Wong, and A. Nadeem, "Government roles in implementing building information modelling systems: Comparison between Hong Kong and the United States," *Constr. Innov.*, vol. 11, no. 1, pp. 61–76, 2011.
- [11] E. A. L. Teo, G. Ofori, I. K. Tjandra, and H. Kim, "The use of BIM in the Singapore construction industry: Opportunities and challenges," in CIB World Building Congress, 2016, pp. 141–152.
- [12] Design Studio Institute, "BIM Case Study: Changi Airport, Singapore," 2024. 15/05/2025.
- [13] Angel Say, "How Fortis Construction saved \$3 million in 3 months with VR BIM reviews," 2024. https://blog.resolvebim.com/how-fortis-construction-saved-3-million-in-3-months-with-vr-bim-reviews/?utm_source=chatgpt.com (accessed May 15, 2025).
- [14] K. Barlish and K. Sullivan, "How to measure the benefits of BIM—A case study approach," *Autom. Constr.*, vol. 24, pp. 149–159, 2012.

Digital Twin sebagai Konsep Integrasi Model Digital untuk Pengelolaan dan Efisiensi Energi pada Bangunan

Onie Dian Sanitha¹, Amiany², Elis Sri Rahayu³

¹ Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal Masuk 26/01/2025 Tanggal diterima 14/05/2025 Tanggal diterima 15/05/2025 Tanggal Publikas Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

Corresponding Author:

Nama *Author*: Onie Dian Sanitha Amiany Elis Sri Rahayu

Email: nonionie@gmail.com

ABSTRAK

Perkembangan teknologi digital telah membawa transformasi signifikan dalam bidang arsitektur, salah satunya melalui konsep Digital Twin. Digital Twin adalah representasi digital dari bangunan fisik yang memungkinkan simulasi dan analisis berbagai aspek kinerja bangunan secara real-time. Artikel ini membahas penerapan Digital Twin dalam arsitektur, khususnya dalam meningkatkan efisiensi energi dan pengelolaan bangunan. Dengan menggunakan model digital yang terintegrasi dengan data sensor dan kecerdasan buatan, sistem ini dapat memantau, menganalisis, mengoptimalkan konsumsi energi serta operasional bangunan secara berkelanjutan. Studi kasus dan tinjauan menunjukkan bahwa implementasi Digital Twin mengidentifikasi potensi penghematan energi, meningkatkan kenyamanan pengguna, serta memperpanjang umur bangunan melalui pemeliharaan prediktif. Hasil penelitian ini mengindikasikan bahwa penerapan Digital Twin tidak hanya meningkatkan efisiensi energi, tetapi juga mendukung konsep smart building yang lebih adaptif dan responsif terhadap kebutuhan lingkungan.

Kata Kunci: *Digital Twin,* arsitektur, efisiensi energi, pengelolaan bangunan, smart building.

Abstract

The development of digital technology has brought significant transformation in the field of architecture, one of which is through the concept of Digital Twin. Digital Twin is a digital representation of a physical building that allows simulation and analysis of various aspects of building performance in real-time. This article discusses the application of Digital Twin in architecture, especially in improving energy efficiency and building management. By using a digital model integrated with sensor data and artificial intelligence, this system can monitor, analyze, and optimize energy consumption and building operations sustainably. Case studies and literature reviews show that the implementation of Digital Twin is able to identify potential energy savings, improve user comfort, and extend the life of the building through predictive maintenance. The results of this study indicate that the implementation of Digital Twin not only improves energy efficiency but also supports the concept of smart buildings that are more adaptive and responsive Vol. II, No. 01, Mei 2025

E-ISSN: in progress

to environmental needs.

Keywords: Digital Twin, architecture, energy efficiency, building management, smart building.

PENDAHULUAN

Perkembangan teknologi digital telah membawa perubahan signifikan dalam berbagai bidang, termasuk arsitektur dan perancangan bangunan. Salah satu inovasi yang semakin mendapat perhatian adalah konsep *Digital Twin*, yaitu representasi digital dari suatu bangunan yang dapat digunakan untuk mensimulasikan, memantau, dan menganalisis berbagai aspek operasionalnya secara real-time. Dengan mengintegrasikan data dari sensor, model *Building Information Modeling* (BIM), serta kecerdasan buatan, *Digital Twin* memungkinkan pengelolaan bangunan yang lebih efisien dan berbasis data.

Dalam konteks arsitektur, *Digital Twin* memiliki peran penting dalam meningkatkan efisiensi energi [1] dan pengelolaan bangunan [2]. Penggunaan model digital yang mampu memprediksi performa energi suatu bangunan memungkinkan arsitek dan pengelola fasilitas untuk mengoptimalkan konsumsi energi , mengurangi jejak karbon, serta meningkatkan kenyamanan pengguna. Selain itu, *Digital Twin* juga dapat digunakan untuk pemeliharaan prediktif, di mana sistem mampu mendeteksi potensi kerusakan atau inefisiensi sebelum terjadi gangguan operasional yang lebih besar.

Meskipun potensinya sangat besar, penerapan *Digital Twin* dalam arsitektur masih menghadapi berbagai tantangan, termasuk kebutuhan akan infrastruktur teknologi yang memadai, integrasi data yang kompleks, serta biaya implementasi yang relatif tinggi. Oleh karena itu, penelitian ini bertujuan untuk mengeksplorasi bagaimana konsep *Digital Twin* dapat diterapkan secara efektif dalam perancangan arsitektur guna meningkatkan efisiensi energi dan pengelolaan bangunan. Melalui studi literatur dan analisis kasus, penelitian ini akan mengidentifikasi manfaat, tantangan, serta peluang dalam pemanfaatan teknologi *Digital Twin* untuk mewujudkan bangunan yang lebih cerdas dan berkelanjutan.

KAJIAN PUSTAKA

Penelitian tentang *Digital Twin* dalam arsitektur banyak dikembangkan dari konsep *Building Information Modeling* (BIM) dan *Internet of Things* (IoT). Beberapa referensi yang relevan antara lain:

- 1. Definisi dan Konsep Digital Twin
 - a) Grieves [3] pertama kali memperkenalkan konsep *Digital Twin* dalam industri manufaktur, yang kemudian diadaptasi ke berbagai bidang, termasuk arsitektur dan pengelolaan bangunan. Grieves mendefinisikan Digital Twin sebagai representasi digital dari produk fisik yang memungkinkan perbandingan antara desain teknik dan hasil produksi aktual. Tujuannya adalah untuk memahami perbedaan antara apa yang dirancang dan apa yang diproduksi, sehingga memperketat hubungan antara desain dan eksekusi. Konsep ini menekankan pentingnya integrasi data real-time dari proses produksi ke dalam model digital untuk meningkatkan kualitas dan efisiensi manufaktur.
 - b) Tao et al. [4] menjelaskan bahwa *Digital Twin* mencakup tiga elemen utama: model fisik (bangunan nyata), model virtual (representasi digital), dan data yang menghubungkan keduanya.

2. Digital Twin dalam Efisiensi Energi

- a) Richard [5] menunjukkan bahwa *Digital Twin* dapat digunakan untuk mensimulasikan konsumsi energi bangunan secara real-time, memungkinkan optimasi sistem HVAC (*Heating, Ventilation, and Air Conditioning*).
- b) Penelitian oleh Yitmen [6] menemukan bahwa integrasi *Digital Twin* dengan sensor IoT dapat mengurangi konsumsi energi hingga 30% melalui analisis pola penggunaan energi dan strategi adaptif dalam operasional bangunan.

3. Digital Twin dalam Pengelolaan Bangunan

- a) Research dari Qi et al. [7] menunjukkan bahwa penggunaan *Digital Twin* memungkinkan pemeliharaan prediktif dengan mendeteksi potensi kerusakan sebelum terjadi, sehingga mengurangi biaya perawatan dan meningkatkan umur bangunan.
- b) Studi dari Opoku et al. [8] menjelaskan bagaimana *Digital Twin* dapat meningkatkan keamanan bangunan dengan sistem pemantauan otomatis berbasis Al untuk mengidentifikasi potensi risiko struktural atau bencana.

CONTOH KASUS PENERAPAN DIGITAL TWIN

a. Marina Bay Sands, Singapura

Singapura telah menjadi salah satu negara yang aktif dalam penerapan *Digital Twin* untuk efisiensi energi dan pengelolaan bangunan. Marina Bay Sands menggunakan model *Digital Twin* yang dikombinasikan dengan sistem IoT untuk:

- 1) Mengoptimalkan pencahayaan dan penggunaan energi berdasarkan pola hunian.
- 2) Meningkatkan efisiensi HVAC dengan memantau suhu dan kelembaban secara real-time.
- 3) Menggunakan Al untuk prediksi pemeliharaan guna menghindari kerusakan sistem yang tidak terduga.

b. The Edge, Amsterdam

Gedung perkantoran ini dianggap sebagai salah satu bangunan paling pintar di dunia karena menggunakan teknologi *Digital Twin* untuk mengelola konsumsi energi dan meningkatkan kenyamanan pengguna [8]. Beberapa fitur utama:

- 1) Sistem pencahayaan berbasis IoT yang menyesuaikan tingkat cahaya sesuai dengan kebutuhan ruang.
- 2) Sensor suhu yang mengatur AC dan ventilasi berdasarkan jumlah penghuni dalam ruangan.
- 3) Sistem analisis prediktif untuk perawatan fasilitas guna mengurangi biaya operasional.

c. Digital Twin London (DigiTwin)

Pemerintah London mengembangkan proyek *DigiTwin* sebagai bagian dari upaya menuju kota cerdas [9]. Proyek ini menciptakan model digital dari infrastruktur kota untuk:

- 1) Menganalisis konsumsi energi bangunan dan menemukan strategi penghematan energi.
- 2) Mengoptimalkan aliran lalu lintas dan penggunaan transportasi publik untuk mengurangi emisi karbon.
- 3) Memfasilitasi perencanaan perkotaan berbasis data untuk pembangunan yang lebih berkelanjutan.

INTEGRASI BIM, IoT, DAN AI DALAM DIGITAL TWIN

Integrasi Building Information Modeling (BIM), Internet of Things (IoT), dan Artificial Intelligence (AI) dalam konsep Digital Twin telah merevolusi pendekatan perancangan dan pengelolaan bangunan, khususnya dalam meningkatkan efisiensi energi dan operasional. BIM berfungsi sebagai fondasi utama dalam pengembangan Digital Twin dengan menyediakan representasi digital yang detail dari elemen-elemen bangunan, termasuk struktur, sistem mekanikal, dan arsitektural. Model ini

memungkinkan visualisasi dan analisis yang mendalam terhadap desain dan fungsi bangunan sebelum tahap konstruksi dimulai. Integrasi BIM ke dalam Digital Twin memungkinkan simulasi yang akurat untuk perencanaan dan pengambilan keputusan yang lebih baik. IoT melengkapi BIM dengan menyediakan data real-time dari berbagai sensor yang dipasang di seluruh bangunan. Sensor-sensor ini mengumpulkan informasi seperti suhu, kelembapan, konsumsi energi, dan kehadiran penghuni, yang kemudian diintegrasikan ke dalam model Digital Twin. Data ini memungkinkan pemantauan kondisi bangunan secara langsung dan mendukung respons adaptif terhadap perubahan lingkungan atau kebutuhan penghuni.

Al memainkan peran penting dalam menganalisis data yang dikumpulkan oleh IoT dan BIM. Melalui algoritma pembelajaran mesin, Al dapat mengidentifikasi pola penggunaan energi, memprediksi kebutuhan pemeliharaan, dan mengoptimalkan sistem bangunan untuk efisiensi maksimal. Misalnya, Al dapat menyesuaikan sistem HVAC secara otomatis berdasarkan prediksi okupansi, sehingga mengurangi konsumsi energi tanpa mengorbankan kenyamanan penghuni. Studi oleh Ni et al. [10] menunjukkan bahwa integrasi teknologi ini dalam Digital Twin dapat meningkatkan efisiensi energi bangunan secara signifikan. Dalam kasus bangunan bersejarah di Swedia, penerapan Digital Twin yang menggabungkan BIM, IoT, dan Al berhasil mengurangi konsumsi energi dan meningkatkan kenyamanan termal penghuni.

Selain itu, platform seperti Microsoft Azure Digital Twins dan Dassault Systèmes' 3DEXPERIENCE telah digunakan untuk mengimplementasikan Digital Twin dalam skala kota, seperti pada proyek Virtual Singapore. Proyek ini menggunakan model 3D yang terintegrasi dengan data real-time untuk simulasi dan perencanaan kota yang lebih efisien dan berkelanjutan [11]. Dengan demikian, integrasi BIM, IoT, dan Al dalam Digital Twin menawarkan pendekatan holistik untuk perancangan dan pengelolaan bangunan yang lebih cerdas, efisien, dan responsif terhadap kebutuhan lingkungan dan penghuni.

KESIMPULAN

Dari berbagai penelitian dan contoh kasus di atas, dapat disimpulkan bahwa penerapan *Digital Twin* dalam arsitektur memiliki dampak signifikan dalam efisiensi energi dan pengelolaan bangunan. Teknologi ini memungkinkan pemantauan dan analisis *real-time* yang dapat meningkatkan efisiensi operasional, mengurangi konsumsi energi, serta meningkatkan kenyamanan dan keamanan penghuni. Namun, tantangan seperti biaya implementasi, infrastruktur teknologi, serta kebutuhan akan standar interoperabilitas masih menjadi kendala dalam adopsi luas teknologi ini. Oleh karena itu, diperlukan penelitian lebih lanjut untuk menemukan solusi implementasi yang lebih terjangkau dan efektif dalam berbagai skala proyek arsitektur.

DAFTAR PUSTAKA

- [1] O. D. Sanitha, T. Fransisco, Y. Iashania, and N. Kristianti, "Alternatif Solusi Mengontrol Cahaya Alami pada Desain Bangunan Komersial: Studi Kasus: Toko Busana di Bukit Keminting Palangka Raya," *ATRIUM J. Arsit.*, vol. 9, no. 2, pp. 115–123, 2023.
- [2] L. M. F. Purwanto et al., "Teknologi dalam Arsitektur Digital." Unika Soegijapranata, 2021.
- [3] M. Grieves and J. Vickers, "Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems," *Transdiscipl. Perspect. complex Syst. New Find. approaches*, pp. 85–113, 2017.
- [4] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, "Digital twin modeling," *J. Manuf. Syst.*, vol. 64, pp. 372–389, 2022.
- [5] A. Richard et al., "Omnilrs: A photorealistic simulator for lunar robotics," in 2024 IEEE

- International Conference on Robotics and Automation (ICRA), 2024, pp. 16901–16907.
- [6] I. Yitmen, A. Almusaed, M. Hussein, and A. Almssad, "Al-Driven Digital Twins for Enhancing Indoor Environmental Quality and Energy Efficiency in Smart Building Systems," *Buildings*, vol. 15, no. 7, p. 1030, 2025.
- [7] Q. Qi and F. Tao, "Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison," *leee Access*, vol. 6, pp. 3585–3593, 2018.
- [8] D.-G. J. Opoku, S. Perera, R. Osei-Kyei, and M. Rashidi, "Digital twin application in the construction industry: A literature review," *J. Build. Eng.*, vol. 40, p. 102726, 2021.
- [9] D. for B. and Trade, "National Digital Twin Programme (NDTP)," 2023. https://www.gov.uk/government/collections/the-national-digital-twin-programme-ndtp?utm_source=chatgpt.com (accessed May 11, 2025).
- [10] Z. Ni, J. Hupkes, P. Eriksson, G. Leijonhufvud, M. Karlsson, and S. Gong, "Parametric Digital Twins for Preserving Historic Buildings: A Case Study at Löfstad Castle in Östergötland, Sweden," *IEEE Access*, 2025.
- [11] S. V. Nath, P. Van Schalkwyk, and D. Isaacs, *Building Industrial Digital Twins: Design, develop, and deploy digital twin solutions for real-world industries using Azure Digital Twins*. Packt Publishing Ltd, 2021.

Kaiian Parameter Kontekstual dalam Arsitektur

E-ISSN: in progress

Studi Arsitektur yang Berakar Pada Tempat

Titiani Widati

Prodi Arsitektur, Universitas Palangka Raya

Info Artikel

Histori Artikel:

Tanggal Masuk 15/05/2025 Tanggal Revisi 19/05/2025 Tanggal Revisi 20/05/2025 Tanggal diterima 20/05/2025 Tanggal Publikasi Mei 2025

Bagian ini diisi oleh Tim Jurnal ALIBI

Corresponding Author:

Nama *Author* : Titiani Widati

Email:

titianiw@arch.upr.ac.id

ABSTRAK

Pemikiran arsitektur postmodern menyatakan bahwa arsitektur harus diinterpretasikan secara plural sehingga memiliki kekayaan makna, dimana pluraisme secara filosofis berarti melawan semua bentuk totalitas, menghargai perbedaan dan keberagaman termasuk didalamnya lokalitas, regional dan keunikan lokal untuk menciptakan keragaman bahasa arsitektur. Berdasarkan pemikiran diatas maka dalam perancangan karya arsitektur tidak lepas pada makna akan tempat. Untuk membangunan suatu karya arsitektur yang memiliki makna maka seorang arsitek harus memperhatikan konteks dimana tempat bangunan tersebut akan berdiri, serta memperhatikan kondisi lokal lingkungan sekitarnya, alamnya atau ketetanggaannya sebagai suatu keunikan lokalitas yang meliputi fisik lingkungan dan sosial budaya masyarakat termasuk sejarah yang dimilikinya. Penelitian kualitatif ini didasarkan pada pendekatan teoritis yang mendefinisikan tentang parameter kontekstual berakar pada tempat dan kajian desain yang mewujudkan parameter tersebut. Pembahasan penelitian ini meliputi tiga skala, yaitu (1) skala makro, (2) skala messo dan (3) skala mikro, dan contoh penerapannya dalam desain arsitektur.

Kata kunci : Arsitektur, kontekstual, berakar pada tempat, lokalitas, parameter kontekstual

Abstract

The idea of postmodern architecture declares that architecture ought to be interpreted plurally therefore it is rich in meaning, where pluralism philosophically means going against all kinds of totallity, appreciating differences, diversity and local uniqueness to create diverse architecture languages. Based on this idea, architecture design is striving in achieving the authentic architecture, never away from meaning of place. To build a meaninaful architecture, an architect must pay attention to the context where the building will stand, and to the local environtment conditions (physical and neighbourhood), as a local uniqueness which covers physical environtment and social cultural of the society, including its history. This qualitative article is based on theoretical approach defining the parameters of contextual which is authentic to place and design study to realize those parameters. It consists of three scopes of discussions which are (1) macro, (2) messo and (3) micro as well as example in design.

Keywords: Architecture, contextual, authentic to place, locality,

contextual parameters

PENDAHULUAN

Arsitektur yang otentik atau mengakar pada tempat meliputi tiga poin yaitu budaya, alam dan perilaku. Menurut Norberg_Schulz (1980) dalam Widati [1] disebutkan bahwa arsitektur di berbagai zaman memiliki keinginan akan adanya makna. Norberg_Schulz juga menyampaiakan ide pemikirannya bahwa arsitektur hendaknya mampu memberikan tempat (*place*). Dimana "tempat" menunjuk kepada hidup (*life*) dan ruang (*space*)[1]. Serta menyarankan hendaknya dalam mencipta karya arsitektur seorang arsitek menanyakan pertanyaan dari dalam : "what does the building want to be?" atau "Mau menjadi apa bangunan ini?".

Pemikiran diatas sejalan dengan ideologi dari arsitektur Postmodern yang menyatakan bahwa arsitektur harus diinterpretasikan secara plural sehingga memiliki kekayaan makna. Pluralisme yang dinyatakan oleh Jenks dalam Ikhwanuddin [2] secara filosofis berarti perang terhadap semua bentuk totalitas, menghargai perbedaan dan keberagaman termasuk didalamnya lokalitas, regional dan keunikan lokal (*respect to local uniqueness*) untuk menciptakan keragaman bahasa arsitektur. Berdasarkan pemikiran diatas maka dalam perancangan karya arsitektur tidak lepas pada makna akan *tempat*. Untuk membangunan suatu karya arsitektur yang memiliki makna maka seorang arsitek harus memperhatikan konteks dimana *tempat* bangunan tersebut akan berdiri, serta memperhatikan kondisi lokal lingkungan sekitarnya, alamnya atau *neighborhood*-nya sebagai suatu keunikan lokalitas yang meliputi fisik lingkungan dan sosial budaya masyarakat termasuk sejarah yang dimilikinya.

Munculnya gerakan kontekstual dan memperkenalkan diri sebagai metoda 'pengobatan' lingkungan yang semakin senjang antara arsitektur dan lingkungannya, dimana arsitektur modern cenderung keluar dari konteks lingkungan setempat serta bingkai komunitas yang sudah menjadi sejarah. Kontekstual berkembang salah satunya dikarenakan oleh ketidakpuasan dengan perkembangan modernism. Kontekstual sangat mempertimbangkan sejarah masa lalu dan terhadap tapaknya (site), muncul dari penolakan dan perlawanan terhadap arsitektur modern yang anti historis, monoton, bersifat industrialisasi dan kurang memperhatikan lingkungan setempat dan kondisi bangunan lama di sekitarnya. Kontekstual berusaha untuk menciptakan arsitektur yang tidak hanya berdiri sendiri namun mampu memberikan konstribusi terhadap lingkungan sekitarnya.

Tulisan ini bertujuan untuk menyusun konektivitas antara pemikiran kontekstual dalam rangka mewujudkan arsitektur yang otentik berakar pada tempat, menyusun parameter yang mewujudkan karakteristik arsitektur tersebut serta melakukan analisa penerapan parameter-parameter tersebut dalam desain arsitektur.

KAJIAN PUSTAKA

1. TINJAUAN PEMIKIRAN KONTEKSTUAL DALAM ARSITEKTUR

Dalam masa modernisasi awal teori keindahan dalam arsitektur berkembang sebagai gaya internasional yang dikenal memiliki kemiripan walaupun setidaknya gaya modern selalu tetap mengusung fungsi ruang sebagai titik awal desain (*form follow function*). Sehingga pada zaman itu bangunan-bangunan yang muncul mempunyai gaya yang mirip bahkan sama meskipun berbeda tempat. Bangunan-bangunan yang muncul terkadang tidak memperhatikan kondisi lokal lingkungan sekitar. Dari sini ada yang mengatakan bahwa arsitektur pada masa itu tidak mempunyai roh (*spirit*).

Untuk dapat memberi gambaran baru, kontekstual diharapkan dapat menjadi pemicu wawasan yang luas dan memberikan kepekaan yang lebih tajam, berbeda dengan arsitektur modern yang telah menjadi aliran tersendiri dalam dunia arsitektur, kontekstual berkembang karena sangat memiliki perbedaan dan ketidakpuasan dengan perkembangan modernism.

Kontekstual muncul dari penolakan dan perlawanan terhadap arsitektur modern anti historis, monoton, bersifat industrialisasi dan kurang memperhatikan kondisi bangunan lama di sekitarnya. Kontekstual berusaha untuk menciptakan arsitektur yang tidak hanya berdiri sendiri namun mampu memberikan konstribusi terhadap lingkungan sekitarnya.

Kontekstual didefinisikan menurut Brolin (1980) dalam Alhamdani (2010) [3] sebagai kemungkinan perluasan bangunan dan keinginan mengaitkan bangunan baru dengan lingkungan sekitarnya, dapat dijelaskan bahwa untuk menghargai martabat suatu lingkungan dengan merancang bangunan yang baru dilingkungan tersebut adalah dengan memberikan suatu kecocokan sehingga tidak mudah didefinisikan sebagai sesuatu yang baru. Hal ini seakan-akan bertentangan dengan pandangan tentang originalitas, hal yang menjadi unsur utama bagi seorang perancang.

Kontekstual dalam arsitektur dapat dilihat dalam dua kelompok yaitu kontras dan harmonis. Kontras menjadi salah satu strategi desain yang paling berpengaruh bagi seorang perancang. Apabila diaplikasikan dengan baik dapat menjadi fokus dan citra aksen pada suatu area kota. Sebaliknya jika diaplikasikan dengan cara yang salah atau sembarangan, maka akan dapat merusak dan menimbulkan kekacauan. Harmonis atau selaras dilakukan dalam rangka menjaga keselarasan dengan lingkungan yang sudas ada. Bangunan baru lebih menghargai dan memperhatikan konteks/lingkungan di mana bangunan itu berada, kemudian bersama-sama dengan bangunan/lingkungan yang sudah ada menjaga dan melestarikan tradisi yang telah berlaku sejak dulu. Sehingga kehadiran bangunan atau sekelompok bangunan baru lebih menunjang daripada menyaingi karakter bangunan yang sudah ada walaupun terlihat dominan (secara kuantitas).

Elemen kontekstual tergantung pada beberapa faktor diantaranya: (1) fitur fisik bangunan, konfigurasi letak bangunan; (2) konteks terhadap tapak (site); (3) konteks terhadap bangunan sekitar yang sudah atau akan dibangun; dan (4) kecocokan bangunan dengan sekitarnya, merancang bangunan dengan menyediakan visualisasi yang cukup untuk menciptakan efek yang menyatu.

2. MODERNISME DAN KONTEKSTUAL

Telah dikatakan bahwa prinsip-prinsip modernism telah memberi konstribusi pada perkembangan bangunan dalam lingkungan yang tidak "kontekstual", yang tidak berusaha membuat harmonis secara visual antara yang satu dengan yang lainnya dan memberi konstribusi pada visual yang mengkarakterisasi sebagian besar dunia kontemporer; adalah logis bahwa non "kontekstual"- ism telah berakar dalam era Revolusi Industri.

Dalam teori arsitektur, kontekstual adalah sebuah teori desain dalam tipe bangunan-bangunan modern yang diselaraskan dengan bentuk-bentuk urban dan biasa sering ditemui di kota-kota tradisional. Perlu diketahui bahwa Arsitektur bisa dipandang sebagai fenomena tunggal unik, yang tidak bisa diulang kembali. Namun arsitektur juga dipandang memiliki sifat *craftsmanship*, yang produksinya dapat di ulang kembali sehingga menimbulkan tipe-tipe.

Reproduksi tipe lama ini adalah sebuah fenomena yang terjadi dan muncul berulang disetiap peradaban arsitektur disebut sebagai eklektisme dan ini berbeda dengan avantgardisme yang merupakan sebuah penemuan tipe baru. Modernis-fungsionalis, avantgardisme menolak ide tipe dalam eklektisme karena akan menyangkal kondisi keunikan yang diharapkan dari suatu kreatifitas modern. Gagasan Modernis-fungsionalis, avant-gardisme (Arsitektur Modern) ini kemudian ternyata gagal dalam mempertahankan kontinuitas dan

formalitas kota tradisional yang sudah dijelaskan sebelumnya. Dalam konteks seperti inilah ide kontekstual muncul kembali [3].

Namun tapak merupakan aspek penting dalam arsitektur minimalis. *Site* menjadi pengaturan bagi elemen-elemen arsitektur dan arsitektur itu sendiri, semacam titik acuan, penanda tetap pada lansekap, serta inspirasi yang direduksi dan diabstraksi ke dalam arsitektur. Tadao Ando sebagai salah satu arsitek modern minimalis menggambarkan kontekstual antara arsitektur dan lingkungannya dengan mempertimbangkan banyak faktor alam memunculkan kekuatan laten dari sebuah tapak, antara lain orientasi geografis, sumber angin dan cahaya, *rainfall* (hujan), pola pergerakan air, dinding-dinding yang berdekatan, usia dari struktur lingkungan dan aliran pergerakan manusia [3].

3. POSTMODERNISME DAN KONTEKSTUAL

Robert Venturi dalam karya tulisnya *Complexity and Contradiction in Architecture* (1966) [4] menjelaskan bahwa pentingnya melihat dan menggunakan sejarah arsitektur dalam mendesain kontemporer melalui esensi suatu perwujudan *historic eclectism,* sekaligus mempromosikan komponen anti modern sebagai pasangan oposisi yang mendua seperti *hybrid/pure, distorted/ straightforward dan ambiguous/articulated.* Dalam karya tulisnya yang lain *Learning from Las Vegas* (1997) [5] yang menempatkan nilai familiaritas, pemikiran budaya *highway "strip"* sebagai simbol yang dikenal. Dalam teorinya tersebut ia menggunakan *both-and* untuk menjelaskan fungsi baik secara eksplisit maupun implisit [3].

Bila Ventury (1966) [4] menekankan pada imej persoalan kontekstual, maka Brolin (1980) [6] berpendapat bahwa kontekstual adalah bagaimana menyelaraskan formalism bangunan baru melalui eksplorasi "kesamaan gaya dan teknologi" yang bersebelahan dengan bangunan lama atau lingkungan lama (Fitting New Buildings with Old) yang memiliki gaya arsitektur tertentu sehingga kontinuitas visual terjaga. Gaya sangat penting dalam kontekstual.

Brolin juga melihat unsur *Both-and* yang dikemukan Venturi bahwa kontras bangunan modern dan kuno bisa merupakan sebuah harmoni namun ia mengingatkan bila terlalu banyak *Shock Effek* yang timbul sebagai akibat kontras, maka efektifitas yang dikehendaki akan menurun sehingga yang muncul adalah *chaos* dan tidak sesuai dengan makna awalnya.

Salah satu karakter arsitektur postmodern adalah menghargai keunikan sejarah, budaya dan lingkungan lokal (Klotz, 1988 dalam Ikhwanuddi [2], Jenks dalam Ikhwanuddin [2] menyatakan bahwa perbedaan antara postmodern dengan modern adalah terletak pada aspek-aspek kontekstual dan kulturnya dalam penciptaan karya-karyanya, seperti eksisting dan budaya masa lalu. Arsitek postmodern mengklaim bangunannya berakar pada tempat (*place*). Jenks (1982) dalam Ikhwanuddin [2] mengatakan dalam rangka menciptakan keragaman bahasa arsitektur, postmodern menghargai keunikan lokalitas setiap tempat (*respect to local uniqueness*), keunikan lokalitas meliputi fisik lingkungan dan sosial budaya masyarakatnya, termasuk sejarah yang dimilikinya.

Teknik kontekstual lain yang digunakan oleh Venturi [4] adalah mencoba mengakomodasi keadaan tapak dan realitas lainnya yang dapat dilakukan melalui berbagai metoda lain seperti distorsi visual terhadap kawasan, yang dapat memberi hal yang menarik akan bangunan dan membantu menghubungkan dengan daerah sekitarnya. Venturi menerima nilai kejutan modulasi yang menganjurkan rancangan memiliki kedekatan atau superimposisi terhadap elemen-elemen yang kontras. Mereka dapat mengambil berbagai bentuk seperti padat atau hampa, garis horizontal atau vertikal untuk membantu wujud arsitektur menjadi lebih menarik.

4. PARAMETER PENDEKATAN KONTEKSTUAL

Jenks (1987) dalam Alhamdani [3] menyatakan bahwa perbedaan postmodern dengan modern terletak pada aspek-aspek kontekstual dan kulturnya dalam penciptaan karya-

karyanya, seperti eksisting dan budaya masa lalu. Jenks (1982) juga menyatakan bahwa arsitek postmodern mengklaim bangunannya berakar pada tempat (*place*) [3]. Dalam rangka menciptakan keragaman bahasa arsitektur, postmodern menghargai keunikan lokalitas budaya tempat (*respect to local uniqueness*). Keunikan lokalitas meliputi fisik lingkungan dan sosial budaya masyarakatnya, termasuk sejarah yang dimilikinya. Kontekstual adalah metodea desain yang mempertimbangkan dan memberikan tanggapan terhadap berbagai karakter disekitarnya (lingkungannya). Tanggapan terhadapa konteks lingkungan meliputi: gaya arsitektur lokal, struktur lingkungan fisik, iklim dan budaya (*culture*) masyarakat.

Oleh Wolford (2004) dalam Alhamdani (2010) [3], elemen kontekstual adalah spesific site atau tapak yang spesifik (bangunan fit terhadap tapak, responsif terhadap tapak, interaksi dan hubungan visual dengan alam baik dalam **skala mikro**, **messo** atau **makro** kawasan), *generale locale* atau nilai lokal (potensi lokal, responsif terhadap langgam kawasan), *shape* atau permukaan (garis atap kawasan atau *skyline*), *size* atau dimensi, *colour of material* atau kekayaan material (responsif terhadap material setempat, pengaruh material terhadap lingkungan. Elemen kontekstual lainnya yaitu tipe material, letak bangunan (orientasi bangunan, posisi bangunan terhadap kawasan), *style* atau gaya, pengulangan susunan, elemen, skala dan proporsi bangunan terhadap manusia atau identitas atau respon terhadap terhadap kriteria langgam dan budaya setempat.

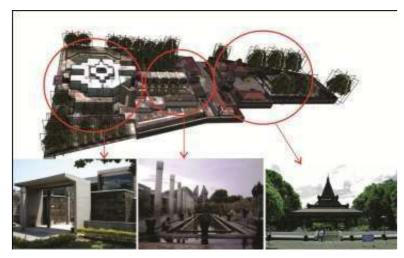
Tabel 1. Parameter Kontekstual

CAKUPAN	PARAMETER	NO	VARIABEL	INDIKATOR
SKALA MAKRO	PENDEKATAN BUDAYA (CULTURAL RESPECT)	1	MEMORI	Adaptasi elemen-elemen sejarah Responsif terhadap kebutuhan di masa ruang
		2	IDENTITAS	Responsif kriteria langgam lokal (proses peleburan/penyatuan) Pengaruh budaya terhadap bentuk
		3	FUNGSI TERHADAP PENGGUNA	Kelokalan (Local Jenius) Responsif fungsi internal dan eksternal
SKALA	PENDEKATAN ALAM (NATURE)	1	KONDISI TAPAK	 Orientasi bangunan terhadap alam dan lingkungan Fit terhadap tapak Responsif terhadap tapak (topografi, lansekap dan potensi lingkunan) Interaksi dan hubungan visual dengan alam dan lingkungan
MESSO		2	FAKTOR IKLIM	Responsif terhadap iklim (cahaya matahari, angin, suhu dan hujan) Memanfaatkan potensi iklim secara aktif dan pasif
	KONTEKS URBAN (URBAN CONTEXTS)	1	STRUKTUR FISIK KAWASAN	Komposisi bangunan yang terstruktur dalam suatu pola geometris tertentu Bangunan dan lingkungan berdasarkan material tekstur kota

		2	STYLE ATAU LANGGAM KAWASAN	Responsif terhadap style atau langgam kawasan Mengikuti tampilan atau melakukan pengulangan (olahan bentuk) obyek pada kawasan
		3	KONTRAS DAN SELARAN	Kontras dan selaras antara lama dan baru Interpenetrasi kawasan
	PENDEKATAN FISIK BANGUNAN (PHYSICAL RESPECT)	1	FASADE DAN DETAIL BANGUNAN	 motif dan detail desain obyek sekitar berupa pola, irama, bukaan, tekstur, warna dan ornamen Surface area, menekankan kesamaan pada bagian tertentu bangunan
SKALA MIKRO		2	BENTUK	Bentuk dasar yang sama atau pengolahan kembali sehingga tampak berbeda Responsif bentuk terhadap letak dan lingkungan Bentuk sebagai citra kawaaan Mengabstraksi bentuk-bentuk asli (kontras), dan memiliki kesamaan visual
		3	SKALA DAN PROPORSI	Tinggi bangunan terhadap bangunan sekitarnya Proporsi bganunan terhadap obyek kawasan
		4	MATERIAL	 Responsif terhadap bahan material lokal, baik warna, style, dan tekstur material Distribusi dan pengaruh material terhadap lingkungan Fungsi material pasif dan aktif terhadap lignkungan

Sumber: Alhamdani, 2010[3]

5. KRITERIA DAN ELEMEN DESAIN DALAM STUDI KASUS


Seperti yang telah dijelaskan di atas, terdapat tiga cakupan bahasan kontekstual, yaitu skala makro (pendekatan budaya, alam dan konteks urban), messo (pendekatan alam dan urban) dan mikro (pendekatan fisik bangunan). Parameter-parameter tersebut diterapkan dalam menganalisa contoh karya arsitektur terpilih yaitu *Soekarno Memorial Park*.

Soekarno Memorial Park merupakan kompleks yang terdiri dari perputakaan, museum dan makam Bung Karno, tokoh nasional Indonesia. Soekarno Memorial Park merupakan karya dari arsitek Baskoro Tedjo yang dibangun pada tahun 2004 di Blitar, Jawa Timur yang kini menjadi salah satu ikon kota yang kental dengan nila historisnya ditambah dengan bangunan baru yang berfungsi sebagai perpustakaan dan museum sebagai tipologi bangunan yang berbeda.

Gambar 1. Tampak keseluruhan *Soekarno memorial park*Sumber : Monalisa, 2016 [7]

Kebudayaan Jawa sebagai dasar konsep tatanan massa dan ruang pada Soekarno Memorial Park yang digunakan dalam proses perancangan. Lokasi Soekarno Memorial Park yang berada diseberang lokasi makam Bung Karno dipandang sebagai sequence yang memiliki korelasi kuat antara kedua lokasi baik secara fisik maupun non fisik. Dalam kebudayaan Jawa terdapat tiga fase kehidupan yang dijadikan dasar konsep dalam tatanan massa dan ruang yaitu fase kehidupan lalu, sekarang dan masa akan datang. Fase kehidupan yang lalu diwujudkan sebagai gerbang entrance. Fase kehidupan sekarang diwujudkan dengan perpustakaan dan museum. Pada fase yang masa yang akan datang diwujudkan dengan makam Bung Karno. Yang menarik lagi terdapat ruang kontemplasi sebagai pemisah antara fase kehidupan sekarang dengan kehidupan yang akan datang yang diwujudkan dengan kolam teratai.

Gambar 2. Gambar site plan dan persfektif Sumber : Monalisa, 2016 [7]

Soekarno Memorial Park memiliki image/bentuk tertentu. Image dari museum Bung Karno mengacu pada bentuk suatu candi dalam periodisasi Indonesia, candi dinyatakan sebagai suatu bentuk fisik atas penghormataan kepada figur atau tokoh yang disegani. Candi Penataran yang juga terlatak tidak jauh dari lokasi dijadikan inspirasi kedalam bentuk Soekarno Memorial Park. Untuk memunculkan karakteristik candi, pemilihan material bangunan yang digunakan juga mengambil peran penting. Material yang digunakan yaitu batu Padalarang yang disusun maju-mundur dalam ritme yang kaya akan relief dan berkolaborasi dengan cahaya matahari yang menciptakan bayangan.

Gambar 3. Material finishing Sumber : Monalisa, 2016 [7]

PEMBAHASAN

Analisa pada *Soekarno Memorial Park* menggunakan tabel dari parameter arsitektur kontekstual adalah sebagai berikut:

Tabel 2 . Analisa parameter kontekstual pada *Soekarno Memorial Park*

Tabel 2 .Analisa parameter kontekstual pada <i>Soekarno Memorial Park</i>					
PARAMETER	NO	VARIABEL	INDIKATOR	CHECK LIST	
1. PENDEKATAN BUDAYA (CULTURAL	1	MEMORI	 Adaptasi elemen - elemen sejarah Responsif terhadap kebutuhan di masa datang Simbolisasi 	√	
	2	IDENTITAS	 Responsif kriteria langgam lokal (proses peleburan / penyatuan) Pengaruh budaya terhadap bentuk 	✓ ✓	
RESPECT)	3	FUNGSI TERHADAP PENGGUNA	Kelokalan Responsif fungsi internal dan eksternal	√ ✓	
		Analisa Berdas	arkan Parameter Kontekstual		
	dari sejarah. Hal ini terlihat pada penggunaan batu Padalarang pada bangunan perpustakaan dan museum Soekarno.				
2.1			unakan merupakan respon terhadap langgam lo material dan teknologi yang modern.	kal yang	
2.2	bangı		<i>morial Park</i> dipengaruhi oleh unsur Budaya Jawa. budaya setempat, hal ini dapat dilihat pada po		

	denga	an alam dan lin	gkungannya.	
2.1	Bangu pada terha	unan museum patung Soekar dap cahaya m	ini menggunakan cahaya matahari sebagai penerang no yang sedang duduk membaca, sehingga banguna i atahari, penggunaan kolam teratai pada area space awa panas yang dibawakan udara.	ni respon
PARAMETER	NO	VARIABEL	INDIKATOR	CHECKL IST
3. SKALA	1	STRUKTUR FISIK KAWASAN	 Komposisi bangunan yang terstruktur dalam suatu pola geometris tertentu Bangunan dan lingkungan berdasarkan material tekstur kota 	101
URBAN (URBAN KONTEKS)	2	STYLE ATAU LANGGAM KAWASAN	 Responsif terhadap style atau langgam kawasan Mengikuti tampilan atau melakukan pengulangan (olahan bentuk) obyek pada kawasan 	✓
	3	KONTRAS DAN SELARAN	 Kontras dan selaras antara lama dan baru Interpenetrasi kawasan 	✓
	<u> </u>		Berdasarkan Parameter Kontekstual	
2.2	yaitu	bentukan Car ustakaan dan I	ngikuti bangunan penting yang ada disekitar kawasan ndi Penataran dan Pemakaman Soekarno sehingga l Museum Soekarno menjadi pengikat kedua elemen l	oangunan
3.1	perpu			ama pada Bangunan ama gunan
PARAMETER	NO	VARIABEL	INDIKATOR	CHECK LIST
4. PENDEKATAN FISIK	1	FASADE DAN DETAIL BANGUNAN	Motif dan detail desain obyek sekitar berupa pola, irama, bukaan, tekstur, warna dan ornamen	

BANGUNAN (PHYSICAL			Surface area, menekankan kesamaan pada bagian tertentu bangunan	
RESPECT)	2	BENTUK	Bentuk dasar yang sama atau pengolahan kembali sehingga tampak berbeda Responsif bentuk terhadap letak dan lingkungan ✓	
			3. Bentuk sebagai citra kawaaan4. Mengabstraksi bentuk-bentuk asli (kontras), dan memiliki kesamaan visual	
	3	SKALA DAN PROPORSI	 Tinggi bangunan terhadap bangunan sekitarnya Proporsi bangunan terhadap obyek kawasan 	
	4	MATERIAL	 Responsif terhadap bahan material lokal, baik warna, style, dan tekstur material Distribusi dan pengaruh material terhadap lingkungan Fungsi material pasif dan aktif terhadap lingkungan 	
		Analisa B	erdasarkan Parameter Kontekstual	
1.1		ya pengulangar	n bentuk sebagai pengarah sehingga membentuk suatu pola n tekstur material menggambarkan lingkungan setempat.	
2.1	_		aan dan museum Soekarno terlihat proporsi diantara dua itu candi Penataran dan makam Soekarno.	
2.2	Potensi lingkungan disekitar tapak adalah potensi wisata makam Pahlawan Bung Karno dan juga tidak jauh dari Candi Penataran membuat kolerasi kuat antar lokasi memorial park dan sekitarnya.			
3.1	Bangunan menyesuaikan proporsi dengan lingkungan bangunan disekitarnya. Terlihat pada atap datar agar terlihat kontras dengan dua bangunan utama. Hal ini agar tidak lebih mencolok dari kedua bangunan lama.			
3.2	Bangunan perpustakaan dan museum ini justru menjadi penetral dua bangunan utama tersebut sehingga proporsinya memberikan keindahan terhadap kawasan wisata Blitar.			
4.1	Pada Padal dides	pola massa <i>Soe</i> arang yang ber ain modern.	ekarno Memorial Park menggunakan budaya jawa, material batu asal dari sekitar kawasan, dan penggunaan langgam jawa yang	

Sumber: Penulis (2024) berdasarkan Alhamdani (2010)[3]

KESIMPULAN

Dari hasil analisa di atas, dapat disimpulkan bahwa parameter kontekstual yang disusun sebelumnya telah diterapkan pada desain arsitektur *Soekarno Memorial Park*. Dengan diterapkannya pendekatan kontekstual pada desain karya arsitektur tersebut, *Soekarno Memorial Park* berhasil mewujudkan arsitektur otentik yang berakar pada tempat yang memiliki keunikan dan kekhususan terhadap kelokalan dimana karya arsitektur itu berdiri.

DAFTAR PUSTAKA

- [1] T. Widati, "Pemikiran Postmodern dalam Arsitektur Frank Llouyd Wright," Universitas Gadjah Mada, 2024.
- [2] Ikhwanuddin, *Menggali pemikiran posmodernisme dalam arsitektur*. Yogyakarta: UGM PRESS, 2005.
- [3] M. R. Alhamdani, "Strategi dan Aplikasi Pendekatan Kontekstual dalam Perancangan Karya Arsitektural Renzo Piano (tesis)," *Progr. Pasca Sarj. Univ. Gadjah Mada, Yogyakarta*, 2010.
- [4] R. Venturi, *Complexity and Contradiction in Architecture*, vol. 66, no. 1. 2012.
- [5] R. Venturi and D. Scott Brown, "IZENOUR, Steven," Learn. from Las Vegas, vol. 15, 1997.
- [6] B. C. Brolin, "Architecture in context: Fitting new buildings with old," (No Title), 1980.
- [7] Monalisa, "Penelitian: Karakteristik Arsitektur yang Berakar pada Tempat sebagai Rencana Rancangan Taman Pahlawan Cilik Riwut, Palangka Raya," 2016.

Volume 2, Edisi 01 Tahun 2025

Perumahan Berbasis Transit-Oriented Development (TOD) Alderina Rosalia. Indrabakti Sangalang	1 - 6
Material Alternatif Pengganti Beton Sebagai Pendukung Prinsip Berkelanjutan dalam Arsitektur Syharozi. Fredyantoni F. Adji. I. Kadek Mardika	7-11
Peran Ruang Transisi dalam Meningkatkan Privasi dan Kenyamanan Thermal pada Rumah Tropis Indrabakti Sangalang, Joni Wahyubuana Usop, Rony Setya Siswadi, Onie D. Sanitha	12-15
Pengaruh BIM dalam Percepatan Proyek Konstruksi Fredyantoni F. Adji. Theo Fransisco2	16-21
Digital Twin sebagai Konsep Integrasi Model Digital untuk Pengelolaan dan Efisiensi Energi pada Bangunan Onie Dian Sanitha. Amiany. Elis Sri Rahayu	22-26
Kajian Parameter Kontekstual dalam Arsitektur Studi Arsitektur yang Berakar Pada Tempat Titiani Widati	27-38
Jurusan/Program Studi Arsitektur, Fakultas Teknik, Universitas Palangka Raya, Kampus UPR Tunjung Nyaho Jalan Hendrik Timang, Palangka Raya (73111), Kalimantan Tengah	The state of the s

jurnal.alibi@arch.upr.ac.id https://e-journal.upr.ac.id/index.php/alibi/index