In Silico Test Ellagic Acid as Anti Hyperpigmentation Agent

Uji In Silico Ellagic Acid sebagai Agen Anti Hiperpimentasi

Authors

  • Ni Kadek Sita Febriyanti Universitas Udayana

DOI:

https://doi.org/10.36873/jjms.2021.v4.i1.704

Keywords:

hiperpigmentasi, ellagic acid, tyrosinase, in silico, docking

Abstract

Hyperpigmentation is a skin problem that occurs due to excess melanin synthesis. One of the factors that cause hyperpigmentation is continuous exposure to UV rays on the skin. Melanin biosynthesis is catalyzed by the melanogenic enzyme tyrosinase. Melanin synthesis can be inhibited by using anti hyperpigmentation agents, one of which is sourced from natural ingredients. Ellagic acid is a phenolic compound that is widely found in plants and has antioxidant activity so that it can inhibit hyperpigmentation through ROS inhibition mechanism. This study aims to determine the potential of ellagic acid in inhibiting the tyrosinase enzyme which will be compared with its native ligand in silico. The in silico test was carried out by molecular docking with the steps of preparation and optimization of ellagic acid using Hyperchem 8, preparation of the tyrosinase enzyme using Chimera 1.11.1, validation and docking using AutoDockTools 1.5.6 equipped with Autodock 4 and Autogrid 4. Molecular docking methods can be declared valid if the value of RMSD (root mean square distance) obtained is not more than 3 . The results of the molecular docking test showed that ellagic acid had an affinity for the tyrosinase enzyme. The bond energy values ​​obtained indicate that the affinity of ellagic acid is stronger and more stable for tyrosinase compared to native ligands. The bond energy value between ellagic acid and tyrosinase is -5.78 kcal/mol. Meanwhile, the binding energy between tyrosinase and its native ligand is -4.83 kcal/mol, so that ellagic acid has the potential as an anti hyperpigmentation agent through the mechanism of inhibition of tyrosinase enzyme activity.

Downloads

Download data is not yet available.

References

Clark, A. K., and R. K. Simvani, ‘Phytochemicals in the treatment of hyperpigmentation’, Botanics: Targets and Therapy, Vol 6, No (6), 89-96, 2016.

Nurniza, N., et al, ‘Penatalaksanaan Perawatan Hiperpigmentasi Pada Gingiva Dengan Metode Scrapping Menggunakan Pisau Bedah: Studi Kasus’ Majalah Sainstekes, Vol 5, No 2, 074-078, 2018.

García, R. M. G., and S. C. Molina, ‘Drug-Induced Hyperpigmentation: Review and Case Series’, Journal of the American Board of Family Medicine, Vol 32, No. 4, 628–638, 2016.

Chandra, M., Levitt, J. And C. A. Pensabene, ‘Hydroquinone Therapy for Post-inflammatory Hyperpigmentation Secondary to Acne: Not Just Prescribable Dermatologists’ Acta Derm Venereol, Vol 92, 232–235, 2012.

Allgisna, K.N., S. Hindun., dan N. Rantika, ‘Perbandingan Beberapa Ekstrak Kulit Buah sebagai Anti-hiperpigmentasi’, Jurnal Sains dan Kesehatan, Vol 3, No 2, 335-432. 2021.

Laksmiani, N. P. L. and I. P. W. Nugraha, ‘Depigmentation Activity of Secang (Caesalpinia sappan L.) Extract through Tyrosinase, Tyrosinase Related Protein-1 and Dopachrome Tautomerase Inhibition’ Biomedical & Pharmacology Journal, Vol 12, No 2, 799-808. 2019.

BRENDA. (2021). Information on EC 1.14.18.1 – Tyrosinase’, The Comprehensive Enzyme Information System. Diaskes 16 Januari 2022, < https://www.brendaenzymes.org/enzyme.php?ecno=1.14.18.1>

Widyastuti, M. D., et al, ‘Aktivitas Antihiperpigmentasi Likopen Secara In Silico’, Jurnal Kimia, Vol 14, No 2, 2020.

Baek, B., et al, ‘Ellagic Acid Plays a Protective Role Against UV-B-Induced Oxidative Stress by Up-Regulating Antioxidant Components in Human Dermal Fibroblasts’ Korean Journal Physiol Pharmacol, Vol 20, No 3, 269-277, 2016.

Mathai, R.T., et al, ‘Amla in the Prevention of Aging: Scientific Validation of the Ethnomedicinal Claims’ Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults, 29-35, 2015.

Huang, Q., et al, ‘Antityrosinase mechanism of ellagic acid in vitro and its effect on mouse melanoma cells’ Journal of Biochemstry, Vol 00, 1-9, 2019.

Mukesh, B. and K. Rakesh, ‘Molecular Docking: a Review’ International Journal of Research in Ayurveda and Pharmacy, Vol 2, No 6, 1746-1751, 2011.

Ferreira, G. L., et al, ‘Molecular docking and Structure-Based Drug Design Strategies’ Molecules, 20, 13384- 13421, 2015.

Candra, G. N. H. dan I. M. A. Wijaya, ‘Molecular Docking Kaempferol Sebagai Antiinflamasi pada Aterosklerosis Secara In Silico’ Pharmauho: Jurnal Farmasi, Sains, dan Kesehatan, Vol 6, No 1, 1-6, 2020.

Adnyani, K. D., et al, A Comprehensive Review on an Important Unani Drug Mulethi (Root of Glycyrrhiza glabra Linn’, Journal of Pharmacognosy and Phytochemistry, Vol 10, No 3, 488-493, 2021

Ismaya, W.T., et al, ‘Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone’ Biochemistry, Vol 50, No 24, 5477–5486, 2011.

Jain, A.N. and A. Nicholls, A, ‘Recommendations for Evaluation of Computational Method’ Journal Computer Aided Molecular Design, Vol, 22 133-139, 2008.

Laksmiani, N. P. L., N. L. P. V. Paramita, and I. M. A. G. Wirasuta, ‘In Vitro and In Silico Antioxidant Activity of Purified Fractions from Purple Sweet Potato Ethanolic Extract’, International Journal of Pharmacy and Pharmaceutical Sciences, Vol 8 No 8, 177-181, 2016.

Pannindriya, P., M. Safithri, DAN K. Tarman, ‘Analisis In Silico Senyawa Aktif Sprirulina platensis Sebagai Inhibitor Tirosinase’, Jurnal Pengolahan Hasil Perikanan Indonesia, Vol 24 No 1, 70-77, 2021.

Jung, H. J., et al, ‘In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives, Computational and Structural Biotechnology Journal, 17, 1255–1264, 2019.

Published

2022-06-15

How to Cite

[1]
Ni Kadek Sita Febriyanti, “In Silico Test Ellagic Acid as Anti Hyperpigmentation Agent: Uji In Silico Ellagic Acid sebagai Agen Anti Hiperpimentasi”, JJMS, vol. 4, no. 1, pp. 25–32, Jun. 2022.