Pengaruh Ekstrak Angkak terhadap Fenotip dan Stomata Pakcoy (Brassica rapa L.) yang Dibudidaya dalam Sistem Hidroponik NFT

Effect Of Angkak Extract on Both Phenotype and Stomata of Brassica rapa Cultivated in Hydroponic NFT System

Authors

  • Ike Apriani Biologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Raden Fatah, Palembang
  • Nurdiah Hasanah Biologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Raden Fatah, Palembang

DOI:

https://doi.org/10.37304/bed.v4i2.13721

Keywords:

Angkak, Pigmen Monascus, Poliploidi, Brassica rapa

Abstract

Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak angkak terhadap fenotip dan stomata dalam menghasilkan tanaman berpotensi poliploidi. Penelitian eksperimen dilakukan dengan menggunakan konsentrasi ekstrak, yaitu 0 (kontrol), 250 mgL-1,500 mgL-1, 750 mgL-1 dan 1000 mgL-1. Data parameter fenotif dianalisa secara kuantitatif menggunakan ANOVA dilanjutkan dengan uji lanjut Duncan, sedangkan data kualitatif dideskripsikan. Ekstrak angkak tidak berpengaruh signifikan terhadap parameter fenotip seperti tinggi tanaman, jumlah daun, berat basah dan tidak ada berat kering. Namun, berpengaruh signifikan pada parameter luas daun. Pengamatan kualitatif stomata menunjukkan bahwa ekstrak angkak dibandingkan dengan kontrol berdampak terhadap bentuk dan ukuran stomata. Potensi poliploidi ditunjukkan pada pengamatan stomata di konsentrasi 750 mgL-1 dan 1000 mgL-1.

Downloads

Download data is not yet available.

References

Adisoemarto, S. 1988. Genetika. Jilid 1. Penerbit Erlangga, Jakarta: 186 hal.

Bae, S. J., Islam, M. M., Kim, H. Y., & Lim, K. B. (2020). Induction of tetraploidy in watermelon with oryzalin treatments. Horticultural Science and Technology, 38(3), 385–393. https://doi.org/10.7235/HORT.20200037

Bharati, R., Gupta, A., Novy, P., Severová, L., Šrédl, K., Žiarovská, J., & Fernández-Cusimamani, E. (2023). Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. Frontiers in Plant Science, 14(December), 1–15. https://doi.org/10.3389/fpls.2023.1332428

Cho, W. Y., Deepo, D. M., Islam, M. M., Nam, S. C., Kim, H. Y., Han, J. S., Kim, C. K., Chung, M. Y., & Lim, K. B. (2021). Induction of polyploidy in Cucumis melo ‘chammel’ and evaluation of morphological and cytogenetic changes. Horticultural Science and Technology, 39(5), 625–636. https://doi.org/10.7235/HORT.20210056

Dabkevičienė, G., Kemešytė, V., Statkevičiūtė, G., Lemežienė, N., & Brazauskas, G. (2017). Autopolyploids in fodder grass breeding: Induction and field performance. Spanish Journal of Agricultural Research, 15(4). https://doi.org/10.5424/sjar/2017154-11357

Dhooghe, E., van Laere, K., Eeckhaut, T., Leus, L., & van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture, 104(3), 359–373. https://doi.org/10.1007/s11240-010-9786-5

Farawahida, A. H., Palmer, J., & Flint, S. (2022). Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. International Journal of Food Microbiology, 379(March), 109829. https://doi.org/10.1016/j.ijfoodmicro.2022.109829

Haring, F., Farid, M., Sudirman, S., & Anshori, M. F. (2023). The Morpho-Somatic and Chromosomal Changes in Colchicine Polyploidy Induction Colocasia esculenta var. Antiquorium. Plant Breeding and Biotechnology, 11(2), 105–116. https://doi.org/10.9787/PBB.2023.11.2.105

Hartati, S., Samanhudi, Cahyono, O., Wibowo, A., & Afanin, H. (2023). Induction of Polyploidy Using Colchicine in Flower Buds from Phalaenopsis Hybrids (Vol. 2). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-128-9_41

Hasana, N. (2020). The Effect Of Colchicine on Phenotypes And Stomata Pakcoy (Brassica Rapa L) Hydroponically With The NFT (Nutrient Film Technique) System. Jurnal Biota, 6(1), 37–41. https://doi.org/10.19109/biota.v6i1.5375

Henry, I. M., Dilkes, B. P., Miller, E. S., Burkart-Waco, D., & Comai, L. (2010). Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics, 186(4), 1231–1245. https://doi.org/10.1534/genetics.110.121079

Hsu, Y. W., Hsu, L. C., Chang, C. L., Liang, Y. H., Kuo, Y. H., & Pan, T. M. (2010). New anti-inflammatory and anti-proliferative constituents from fermented red mold rice Monascus purpureus NTU 568. Molecules, 15(11), 7815–7824. https://doi.org/10.3390/molecules15117815

KARA, Z., & YAZAR, K. (2022). Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicineapplications. Turkish Journal of Agriculture and Forestry, 46(2), 152–159. https://doi.org/10.55730/1300-011x.2967

Knecht, A., & Humpf, H. U. (2006). Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Molecular Nutrition and Food Research, 50(4–5), 406–412. https://doi.org/10.1002/mnfr.200500238

Kusdiyantini, E. (2023). Produksi dan Ekstraksi Pigmen Anka Monascus purpureus pada Beras IR42. Bioma : Berkala Ilmiah Biologi, 24(2), 162–165. https://doi.org/10.14710/bioma.24.2.162-165

Luo, Z., Iaffaldano, B. J., & Cornish, K. (2018). Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Industrial Crops and Products, 112(August 2017), 75–81. https://doi.org/10.1016/j.indcrop.2017.11.010

Mahardhika, W. A., Aqlinia, M., Putri, D. A., Effendi, F. S., Maherani, V. F. A., & Listiyowati, S. (2022). Monascus sp. Pigment Potency as Simple Preservative in Food Ingredients. Jurnal Biologi Tropis, 22(3), 781–786. https://doi.org/10.29303/jbt.v22i3.3761

Mahardika, G. B., Nahara, A. R., & Gunawan, S. (2022). Titik Kritis Halal Olahan Natural Products sebagai Bahan Aditif Pangan. Halal Research Journal, 2(2), 112–119. https://doi.org/10.12962/j22759970.v2i2.424

Maity, P., Kasisomayajula, S. V., Parameswaran, V., Basu, S., & Gupta, N. (2008). Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Transactions on Dielectrics and Electrical Insulation, 15(1), 63–72. https://doi.org/10.1109/T-DEI.2008.4446737

Niazian, M., & Nalousi, A. M. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell, Tissue and Organ Culture, 142(3), 447–469. https://doi.org/10.1007/s11240-020-01888-1

Pamungkas, E. M. P., Dewi, L., & Tapilouw, M. C. (2022). Penambahan angkak (Monascus purpureus) pada tempe dalam peningkatan antioksidan. Teknologi Pangan : Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian, 13(2), 144–155. https://doi.org/10.35891/tp.v13i2.2923

Perwati, L. K. (2012). Analisis Derajat Ploidi dan Pengaruhnya Terhadap Variasi Ukuran Stomata dan Spora pada Adiantum raddianum. Bioma : Berkala Ilmiah Biologi, 11(2), 39. https://doi.org/10.14710/bioma.11.2.39-44

Pravitasari, A. D., & Milanda, T. (2020). Fermentasi dan Karakterisasi Berbagai Zat Warna Monascus yang diisolasi dari Angkak. Farmaka, 18(1), 78–83.

Puspita, D., Lestario, L. N., & Al-janati, F. H. (2023). Analisa Pigmen Monascus sp yang Ditumbuhkan pada Berbagai Varietas Beras. Journal Science of Biodiversity, 4(1), 6–11. https://doi.org/10.32938/jsb/vol4i1pp6-11

Sesanti, R. N., & Sismanto. (2016). Pertumbuhan Dan Hasil Pakchoi (Brasicca rapa L.) Pada Dua Sistem Hidroponik Dan Empat Jenis Nutrisi. Kelitbangan, 04(01), 1–8.

Si, J., Yuan, T. Q., & Cui, B. K. (2015). Exploring strategies for adsorption of azo dye Congo Red using free and immobilized biomasses of Trametes pubescens. Annals of Microbiology, 65(1), 411–421. https://doi.org/10.1007/s13213-014-0874-3

Srianta, I., Zubaidah, E., Estiasih, T., Yamada, M., & Harijono. (2016). Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation. Biocatalysis and Agricultural Biotechnology, 7, 181–186. https://doi.org/10.1016/j.bcab.2016.05.011

Srivastav, P., Yadav, V. K., Govindasamy, S., & Chandrasekaran, M. (2015). Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. Nutrafoods, 14(3), 159–167. https://doi.org/10.1007/s13749-015-0032-y

sudirman, Amier, N., & Rahmat, I. S. (2022). The Morphology Character of Japanese Taro ( Colocasia esculenta var . Antiquorum ) In Induction of Polyploidization Mutations In Vitro : A Case Study of Increased Concentration and Duration of Immersion of Colchicine Mutagens. International Journal of Applied Biology, 6(1), 93–103.

Talebi, S. F., Saharkhiz, M. J., Kermani, M. J., Sharafi, Y., & Raouf Fard, F. (2017). Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia, 70(2), 184–193. https://doi.org/10.1080/00087114.2017.1318502

Tang, Z. Q., Chen, D. L., Song, Z. J., He, Y. C., & Cai, D. T. (2010). In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell, Tissue and Organ Culture, 102(2), 213–220. https://doi.org/10.1007/s11240-010-9724-6

Tangboriboon, N., Chaisakrenon, S., Banchong, A., Kunanuruksapong, R., & Sirivat, A. (2012). Mechanical and electrical properties of alumina/natural rubber composites. Journal of Elastomers and Plastics, 44(1), 21–41. https://doi.org/10.1177/0095244311416579

Umamaheswari, S., Malkar Oli, S., & Naveena, K. (2017). FTIR spectral and microarchitectural analysis of cellulose produced by Lactococcus lactis under agitated condition. Journal of Pure and Applied Microbiology, 11(4), 1965–1971. https://doi.org/10.22207/JPAM.11.4.38

Wang, F., Zhuo, X., Arslan, M., Ercisli, S., Chen, J., Liu, Z., Lan, S., & Peng, D. (2023). In Vitro Induction of Polyploidy by Colchicine in the Protocorm of the Orchid Dendrobium wardianum Warner. HortScience, 58(11), 1368–1375. https://doi.org/10.21273/HORTSCI17355-23

Wiendra, N. M. S., & Pharmawati, M. (2019). Morphological and Anatomical Changes by Cochicine in Seedling of Impatiens balsamina L. Advances in Tropical Biodiversity and Environmental Sciences, 3(2), 33. https://doi.org/10.24843/atbes.2019.v03.i02.p04

Wu, J., Zhou, Q., Sang, Y., Zhao, Y., Kong, B., Li, L., Du, J., Ma, L., Lu, M., & Zhang, P. (2023). In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis. BMC Plant Biology, 23(1), 1–13. https://doi.org/10.1186/s12870-023-04578-0

Wu, Y., Sun, Y., Sun, S., Li, G., Wang, J., Wang, B., Lin, X., Huang, M., Gong, Z., Sanguinet, K. A., Zhang, Z., & Liu, B. (2018). Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. Theoretical and Applied Genetics, 131(6), 1273–1285. https://doi.org/10.1007/s00122-018-3077-7

Xie, N., Zhao, Y., Huang, M., Chen, C., Cao, C., Wang, J., Shi, Z., & Gao, J. (2024). Polyploid Induction and Identification of Begonia × benariensis. Horticulturae, 10(1). https://doi.org/10.3390/horticulturae10010047

Yuliana, A. (2018). Isolasi Zat Warna Baru Monascus purpureus Dari Hasil Fermentasi Padat Dengan Beras Sebagai Substrat. Journal of Pharmacopolium, 1(1), 178–185. https://doi.org/10.36465/jop.v1i1.391

Downloads

Published

2023-12-01

How to Cite

Apriani, I., & Nurdiah Hasanah. (2023). Pengaruh Ekstrak Angkak terhadap Fenotip dan Stomata Pakcoy (Brassica rapa L.) yang Dibudidaya dalam Sistem Hidroponik NFT: Effect Of Angkak Extract on Both Phenotype and Stomata of Brassica rapa Cultivated in Hydroponic NFT System. BiosciED: Journal of Biological Science and Education, 4(2), 87–96. https://doi.org/10.37304/bed.v4i2.13721

Issue

Section

Biological Sciences