MODEL KLASIFIKASI KEPUASAN MAHASISWA TEKNIK TERHADAP SARANA PEMBELAJARAN MENGGUNAKAN DATA MINING
DOI:
https://doi.org/10.47111/jti.v14i2.1222Keywords:
Data Mining, Classification, Decision Tree, C4.5, UniversityAbstract
Student in one of the stakeholder in a university. Therefore, student’s perception in the quality of learning facilities and infrastructures become important to ensure the university’s performance. The Faculty of Engineering of University of Palangka Raya has not comprehensively evaluated the students’ satisfactory of the learning’s facilities. In this research, methods from data mining approach was implemented to classify whether the students satisfy or not with the quality of the learning’s facility in Engineering Faculty. This research compared three data mining algorithm, Decision Tree C4.5, Support Vector Machine, and Naïve Bayes to obtain the best algorithm for the prediction system. 948 responses were collected, 61% of the respondent were satisfied with the quality of the learning facilities and infrastructures, while 39% of the respondents were dissatisfied. The Decision Tree c4.5 had the best performance with accuracy of 88% and precision of 98% compared to the Naïve Bayes and support vector machine.
Downloads
References
D. Purwandani, C. Sutarsih, and Sururi, “Pengaruh Mutu Layanan Sarana dan Prasarana Terhadap Kepuasan Mahasiswa di Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia,” J. ADPEND Tata Kelola Pendidik.
A. Sunandar, “Efektivitas Keberadaan Komite Sekolah Untuk Peningkatan Mutu Layanan Sekolah,” Skripsi. Universitas Negeri Malang, 2013.
N. Legiwati, “Pengaruh Pemanfaatan Sarana Dan Prasarana Pembelajaran Dan Motivasi Belajar Terhadap Hasil Belajar Siswa Kelas Vii Smpn 3 Grati Satap Kabupaten Pasuruan,” J. Penelit. dan Pendidik. IPS, vol. 10, no. 2, pp. 294--309, 2016.
M. Bharati and M. Ramageri, Data mining techniques and applications. Indian Journal of Computer Science and Engineering, vol. 1 no. 4, pp. 301-305. 2010.
R. Harmann, “Penerapan Metode Data Mining (Naïve Bayes) Untuk Menganalisis Tingkat Mutu Pelayanan (TMP) Pada Pelanggan Studi Kasus,” Pada Pelanggan Studi Kasus, Batam: PT PLN Batam. Universitas Batam, 2013.
M. I. R. Saputra, “Implementasi Data Mining Menggunakan Algoritma C4.5 Untuk Prediksi Kepuasan Pelanggan Taksi Kosti,”. Skripsi. Fakultas Ilmu Komputer UDINUS, 2016.
J. Ferlin, F. A. Bachtiar, and A. N. Rusydi, “Klasifikasi Customer Intent untuk Mengetahui Tingkat Kepuasan Pelanggan menggunakan Metode Support Vector Machine pada Restoran Bakso President.,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, 2020.
R. Indrawan and P. Yaniawati, Metodologi penelitian kuantitatif, kualitatif, dan campuran untuk manajemen, pembangunan, dan pendidikan. Bandung: Refika Aditama, 2014.
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,” Expert System Application, vol. 73, pp. 220--239, 2017.
D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37–63, 2011.
Sugiyono, Statistika untuk penelitian. Bandung: Alfabeta, 2014.