Implementasi R Software Untuk Prediksi Curah Hujan (Perbandingan ARMA dan ARIMA)
DOI:
https://doi.org/10.47111/jti.v8i2.1483Keywords:
ARMA, ARIMA, forecasting, rainfall, R software statisticAbstract
Rainfall or weather conditions that occur in a particular area can basically be calculated, or
predicted. X district is an area that is frequently flooded during the rainy season. Forecasting rainfall can
help governments and communities in taking flood precautions [1]. In this study, forecasting rainfall in
the district of X, is done by using time series method approach. To perform forecasting rainfall, used two
methods, ARMA and ARIMA. Furthermore, the results of both methods are compared with the actual data
to determine which method is most closely with real data. The conclusion of this study is the method of
ARMA (1,1) forecasting results are closer to the real data [2].
Downloads
References
. Miladan, N. 2009. Kajian
Kerentanan Wilayah Pesisir Kota X
Terhadap Perubahan Iklim. Program
Pascasarjana Magister Teknik
Pembangunan Wilayah Dan Kota
Universitas Diponegoro Semarang.
. Parhusip, Rosemary Juliend, dan Adi
Nugroho, 2014. Perbandingan
ARMA dan ARIMA untuk Prediksi
Curah Hujan (Studi Kasus
Kabupaten Semarang), Fakultas
Teknologi Informasi, Universitas
Kristen Satya Wacana, Jl.
Diponegoro 52-60, Salatiga 50711,
Indonesia
. Atiqoh, Zahroh, 2010. Estimasi
Parameter Model ARMA Untuk
Peramalan Debit Air Sungai
Menggunakan Goal Programming.
Jurusan Matematika Fakultas Ilmu
Pengetahuan Alam Institut
Teknologi Sepuluh Nopember
Surabaya.
. Alit Budiningtyas, M. 2012. Prediksi
Curah Hujan Bulanan di Kabupaten
Boyolali Menggunakan Metode
ARIMA (Autoregressive Integrated
Moving Average) untuk
Perencanaan Pola Tanam Padi dan
Palawija. Program Studi Teknik
Informatika, Fakultas Teknologi
Informasi, Universitas Kristen Satya
Wacana.
. Brath, A., Castellarin, A., &
Montanari, A. 1999. Detecting non
stationarity in extreme rainfall data
observed in Northern Italy. In
Proceedings of EGS–Plinius
Conference on Mediterranean
Storms, Maratea (pp. 219-231).
. Iriawan, N. 2006. Mengolah Data
Statistik Artikel Baru Siaran dan
Hiburan Menggunakan Minitab 14.
Yogyakarta: Andi Offset.
. Sadeq, Ahmad. 2008. Analisis
Prediksi Gabungan Beginning
Saham Gabungan Artikel Baru
Disability ARIMA. Program Studi
Magister Manajemen Program Pasca
Sarjana Universitas Diponegoro.
Semarang.
http://eprints.undip.ac.id/16307/1/A
HMAD_SADEQ.pdf Arsyad, L.
PERAMALAN Bisnis.
Jakarta: Ghalia Indonesia.
. Heddy, S., 1987. Ekofisiologi
Pertanaman. Sinar Baru Algesindo.
Bandung.
. Makridakis, Spyros. 1998. Disability
Aplikasi Untuk Dan Peramalan.
Erlangga: Jakarta.