Implementasi R Software Untuk Prediksi Curah Hujan (Perbandingan ARMA dan ARIMA)

DOI:

https://doi.org/10.47111/jti.v8i2.1483

Keywords:

ARMA, ARIMA, forecasting, rainfall, R software statistic

Abstract

Rainfall or weather conditions that occur in a particular area can basically be calculated, or
predicted. X district is an area that is frequently flooded during the rainy season. Forecasting rainfall can
help governments and communities in taking flood precautions [1]. In this study, forecasting rainfall in
the district of X, is done by using time series method approach. To perform forecasting rainfall, used two
methods, ARMA and ARIMA. Furthermore, the results of both methods are compared with the actual data
to determine which method is most closely with real data. The conclusion of this study is the method of
ARMA (1,1) forecasting results are closer to the real data [2].

Downloads

Download data is not yet available.

References

. Miladan, N. 2009. Kajian

Kerentanan Wilayah Pesisir Kota X

Terhadap Perubahan Iklim. Program

Pascasarjana Magister Teknik

Pembangunan Wilayah Dan Kota

Universitas Diponegoro Semarang.

. Parhusip, Rosemary Juliend, dan Adi

Nugroho, 2014. Perbandingan

ARMA dan ARIMA untuk Prediksi

Curah Hujan (Studi Kasus

Kabupaten Semarang), Fakultas

Teknologi Informasi, Universitas

Kristen Satya Wacana, Jl.

Diponegoro 52-60, Salatiga 50711,

Indonesia

. Atiqoh, Zahroh, 2010. Estimasi

Parameter Model ARMA Untuk

Peramalan Debit Air Sungai

Menggunakan Goal Programming.

Jurusan Matematika Fakultas Ilmu

Pengetahuan Alam Institut

Teknologi Sepuluh Nopember

Surabaya.

. Alit Budiningtyas, M. 2012. Prediksi

Curah Hujan Bulanan di Kabupaten

Boyolali Menggunakan Metode

ARIMA (Autoregressive Integrated

Moving Average) untuk

Perencanaan Pola Tanam Padi dan

Palawija. Program Studi Teknik

Informatika, Fakultas Teknologi

Informasi, Universitas Kristen Satya

Wacana.

. Brath, A., Castellarin, A., &

Montanari, A. 1999. Detecting non

stationarity in extreme rainfall data

observed in Northern Italy. In

Proceedings of EGS–Plinius

Conference on Mediterranean

Storms, Maratea (pp. 219-231).

. Iriawan, N. 2006. Mengolah Data

Statistik Artikel Baru Siaran dan

Hiburan Menggunakan Minitab 14.

Yogyakarta: Andi Offset.

. Sadeq, Ahmad. 2008. Analisis

Prediksi Gabungan Beginning

Saham Gabungan Artikel Baru

Disability ARIMA. Program Studi

Magister Manajemen Program Pasca

Sarjana Universitas Diponegoro.

Semarang.

http://eprints.undip.ac.id/16307/1/A

HMAD_SADEQ.pdf Arsyad, L.

PERAMALAN Bisnis.

Jakarta: Ghalia Indonesia.

. Heddy, S., 1987. Ekofisiologi

Pertanaman. Sinar Baru Algesindo.

Bandung.

. Makridakis, Spyros. 1998. Disability

Aplikasi Untuk Dan Peramalan.

Erlangga: Jakarta.

Downloads

Published

2014-08-29