PERBANDINGAN METODE K–NEAREST NEIGHBOR (KNN) DAN NAIVE BAYES TERHADAP ANALISIS SENTIMEN PADA PENGGUNA E-WALLET APLIKASI DANA MENGGUNAKAN FITUR EKSTRAKSI TF-IDF
DOI:
https://doi.org/10.47111/jti.v18i2.15009Keywords:
Analisis Sentimen, Aplikasi DANA, K-Nearest Neighbor (KNN), Naive BayesAbstract
This research compares the accuracy of the K-Nearest Neighbor (KNN) and Naive Bayes methods in classifying user sentiment towards the DANA e-wallet application using Term Frequency-Inverse Document Frequency (TF-IDF) feature extraction. User review data was collected through web scraping techniques and labeled by linguists and lexicon models. After undergoing pre-processing steps such as case folding, cleaning, tokenizing, stopword removal, and stemming, the data was classified using the KNN and Naive Bayes methods. The research results indicate that data labeling by linguists significantly improves the accuracy of both classification methods. Additionally, using TF-IDF as a word weighting method proves effective in enhancing the performance of sentiment classification models. Sentiment analysis of user reviews of the DANA application reveals various complaints and issues faced by users, providing information that can be used to improve the features and services offered, thereby increasing user satisfaction. This research also provides a comparison between the KNN and Naive Bayes methods, which can serve as a reference for other researchers in selecting appropriate methods for sentiment analysis on similar datasets.
Downloads
References
E. Salehudin Basryah, A. Erfina, and C. Warman, “ANALISIS SENTIMEN APLIKASI DOMPET DIGITAL DI ERA 4.0 PADA MASA PENDEMI COVID-19 DI PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER,” 2021.
M. Badri, “Adopsi Inovasi Aplikasi Dompet Digital di Kota Pekanbaru,” 2020. [Online]. Available: www.ejournal.polbeng.ac.id/index.php/IBP
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id
Heti Palestina Yunani, “4 Alasan Aman Pakai DANA, Memberikan Kenyamanan saat Bertransaksi,” Harian Disway.
A. Athallah Muhammad et al., “ANALISIS SENTIMEN PENGGUNA APLIKASI DANA BERDASARKAN ULASAN PADA GOOGLE PLAY MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” Senamika, 2022.
Shanty, “Capai Pertumbuhan Positif 2023 Hingga 23% DANA Sambut Optimis 2024.”
A. Nurian and B. Nurina Sari, “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI GOOGLE PLAY MENGGUNAKAN NAÏVE BAYES,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, pp. 2830–7062, 2023, doi: 10.23960/jitet.v11i3%20s1.3348.
A. Z. Amrullah, A. Sofyan Anas, M. Adrian, and J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal, vol. 2, no. 1, 2020, doi: 10.30812/bite.v2i1.804.
E. Ogi, I. Pratiwi1, and W. Yustanti2, “Analisis Sentimen Kualitas Layanan Teknologi Pembayaran Elektronik pada Twitter (Studi Kasus Ovo dan Dana),” JEISBI, vol. 02, p. 2021, 2021.
M. K. Rifa, M. H. Totohendarto, and M. R. Muttaqin, “Analisis Sentimen Penguna E-Wallet Dana Dan Gopay Pada Twitter Menggunakan Metode Support Vector Machine (SVM),” IJCCS, vol. x, No.x, pp. 1–5, 2023.
R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 646, Dec. 2021, doi: 10.32493/informatika.v5i4.7622.
D. Cahyanti, A. Rahmayani, and S. Ainy Husniar, “Indonesian Journal of Data and Science Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” vol. 1, no. 2, pp. 39–43, 2020.
S. S. Salim and J. Mayary, “ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP DOMPET ELEKTRONIK DENGAN METODE LEXICON BASED DAN K – NEAREST NEIGHBOR,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.
S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” 2019, [Online]. Available: http://dev.twitter.com.
W. E. Saputro, H. Yuana, and W. D. Puspitasari, “ANALISIS SENTIMEN PENGGUNA DOMPET DIGITAL DANA PADA KOLOM KOMENTAR GOOGLE PLAY STORE DENGAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE,” 2023.
M. Fernanda and N. Fathoni, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Jurnal Informatika dan Sains Teknologi, vol. 1, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v1i3.112.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.
A. Dwiki, A. Putra, and S. Juanita, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN,” JATISI, vol. 8, no. 2, 2021, [Online]. Available: http://jurnal.mdp.ac.id
T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id
A. Putri, C. Syaficha Hardiana, E. Novfuja, F. Try Puspa Siregar, Y. Fatma, and R. Wahyuni, “Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,” Institut Riset dan Publikasi Indonesia (IRPI) MALCOM: Indonesian Journal of Machine Learning and Computer Science Journal Homepage, vol. 3, no. 1, pp. 20–26, 2023.
D. Azzahra Nasution, H. H. Khotimah, and N. Chamidah, “PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN,” 2019.
P. Putra, A. M. H Pardede, and S. Syahputra, “ANALISIS METODE K-NEAREST NEIGHBOUR (KNN) DALAM KLASIFIKASI DATA IRIS BUNGA,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 6, no. 1, 2022.
N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, Nov. 2020, doi: 10.30864/jsi.v15i1.332.
J. Khatib Sulaiman, M. Dzakwan Ar Rosyid, and I. Artikel Abstrak, “Klasifikasi Tingkat Risiko Kesehatan Ibu Hamil Menggunakan Algoritma Support Vectore Machine Universitas AMIKOM Yogyakarta,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2798, 2023.
R. Kurniawan and D. Anubhakti, “Implementasi Algoritma Support Vector Machine Dalam Memprediksi Harga Saham PT. KRAKATAU STEEL TBK,” vol. 2, no. 2, 2023.
I. H. Herman, D. Widiyanto, and I. Ernawati, PENGGUNAAN K-NEAREST NEIGHBOR (KNN) UNTUK MENGIDENTIFIKASI CITRA BATIK PEWARNA ALAMI DAN PEWARNA SINTETIS BERDASARKAN WARNA. 2020.
R. Nur Ariyanti and R. Cahya Wihandika, “Identifikasi Jenis Attention Deficit Hyperactivity Disorder (ADHD) Pada Anak Usia Dini Menggunakan Metode Modified K-Nearest Neighbor (MKNN),” 2019. [Online]. Available: http://j-ptiik.ub.ac.id