ANALISIS SENTIMEN PADA ULASAN APLIKASI GOOGLE MAPS TERHADAP PELAYANAN BADAN PENYELENGGARA JAMINAN SOSIAL (BPJS) KESEHATAN SAMARINDA MENGGUNAKAN METODE K-NEAREST NEIGHBOR DENGAN FITUR EKSTRAKSI TF-IDF

Authors

  • Ikhsan Nuttakwa Takbirata Ihram Nabawi Ikhsan Universitas Muhammadiyah Kalimantan Timur
  • Rudiman Rudiman Universitas Muhammadiyah Kalimantan Timur
  • Fendy Yulianto Fendy Universitas Muhammadiyah Kalimantan Timur

DOI:

https://doi.org/10.47111/jti.v18i2.15010

Keywords:

Sentiment Analysis, BPJS Kesehatan,, , K-Nearest Neighbor

Abstract

This study aims to analyze public sentiment towards the services of BPJS Kesehatan Samarinda based on reviews on the Google Maps application. The method used in this research is K-Nearest Neighbor (KNN) with TF-IDF (Term Frequency-Inverse Document Frequency) feature extraction. The data used consists of 500 Indonesian-language reviews collected through web scraping techniques. After the data collection process, the data was labeled by an expert, and then a pre-processing stage was carried out, including case folding, cleaning, tokenizing, stop word removal, and stemming. The data was then weighted using the TF-IDF method to identify important words. The testing was conducted using a training and testing data ratio of 70:30 and a k value of 5. The results showed that the KNN method was able to classify positive and negative sentiments with an accuracy rate of 93.3%. This analysis provides an overview of the service quality of BPJS Kesehatan in Samarinda and can be used as a basis for service improvements. Additionally, this research contributes to the use of KNN and TF-IDF for sentiment analysis, opening opportunities for further research in this field.  

Downloads

Download data is not yet available.

References

L. Linda, Y. Haskas, E. Kadrianti, and S. Nani Hasanuddin Makassar, “PERBEDAAN PERSEPSI PENGGUNA JASA BPJS DAN NON BPJS (UMUM) TENTANG KUALITAS PELAYANAN KEPERAWATAN DIRSUD TIMIKA-PAPUA.”

Annisa Medina Sari, “Perbedaan Fakes BPJS Tingkat 1,2,3 Yang Harus Diketahui.”

BPJS Kesehatan, “https://bpjs-kesehatan.go.id/.”

Antara Kaltim, “Tingkat kepesertaan BPJS Kesehatan Samarinda mencapai 100,89 persen.”

R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 646, Dec. 2021, doi: 10.32493/informatika.v5i4.7622.

Khadijah Nur Azizah, “7 Tahun BPJS Kesehatan, Peserta Masih Keluhkan Antrean Berjam-jam.”

CNN INDONESIA, “Kisah Pengidap Tumor Asal Sulses Lancar Operasi Berkat JNN-KIS.”

IDN Times Kaltim, “Ribet, Warga Keluhkan Pelayanan BPJS Kesehatan di Samarinda.”

H. Parasian Doloksaribu and Y. T. Samuel, “KOMPARASI ALGORITMA DATA MINING UNTUK ANALISIS SENTIMEN APLIKASI PEDULILINDUNGI,” vol. 16, no. 1, 2022, doi: 10.47111/JTI.

A. Z. Amrullah, A. Sofyan Anas, M. Adrian, and J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal, vol. 2, no. 1, 2020, doi: 10.30812/bite.v2i1.804.

M. Al Khadafi, K. Paranita Kartika, and F. Febrinita, “PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN LEXICON BASED UNTUK ANALISIS SENTIMEN CYBERBULLYING PADA BPJS,” 2022.

S. S. Salim and J. Mayary, “ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP DOMPET ELEKTRONIK DENGAN METODE LEXICON BASED DAN K – NEAREST NEIGHBOR,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.

I. N. Amanny Ulfah Nabiylah Ramadhanty, “IMPLEMENTASI WEB SCRAPING PADA SITUS JURNAL SINTA MENGGUNAKAN FRAMEWORK SELENIUM WEBDRIVER PYTHON,” 2023.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.

Ratih Puspitasari, Y. Findawati, and M. A. Rosid, “SENTIMENT ANALYSIS OF POST-COVID-19 INFLATION BASED ON TWITTER USING THE K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION METHODS,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 4, pp. 669–679, Aug. 2023, doi: 10.52436/1.jutif.2023.4.4.801.

A. N. Assidyk, E. B. Setiawan, S. Si, I. Kurniawan, S. Pd, and M. Si, “Analisis Perbandingan Pembobotan TF-IDF dan TF-RF pada Trending Topic di Twitter dengan Menggunakan Klasifikasi K-Nearest Neighbor,” 2020.

T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

A. Putri, C. Syaficha Hardiana, E. Novfuja, F. Try Puspa Siregar, Y. Fatma, and R. Wahyuni, “Comparison of K-NN, Naive Bayes and SVM Algorithms for Final-Year Student Graduation Prediction Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,” Institut Riset dan Publikasi Indonesia (IRPI) MALCOM: Indonesian Journal of Machine Learning and Computer Science Journal Homepage, vol. 3, no. 1, pp. 20–26, 2023.

D. Azzahra Nasution, H. H. Khotimah, and N. Chamidah, “PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN,” 2019.

P. Putra, A. M. H Pardede, and S. Syahputra, “ANALISIS METODE K-NEAREST NEIGHBOUR (KNN) DALAM KLASIFIKASI DATA IRIS BUNGA,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 6, no. 1, 2022.

M. K. Rifa, M. H. Totohendarto, and M. R. Muttaqin, “Analisis Sentimen Penguna E-Wallet Dana Dan Gopay Pada Twitter Menggunakan Metode Support Vector Machine (SVM),” IJCCS, vol. x, No.x, pp. 1–5, 2023.

R. Kurniawan and D. Anubhakti, “IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINEDALAM MEMPREDIKSI HARGA SAHAM PT. KRAKATAU STEEL TBK,” vol. 2, no. 2, 2023.

I. H. Herman, D. Widiyanto, and I. Ernawati, PENGGUNAAN K-NEAREST NEIGHBOR (KNN) UNTUK MENGIDENTIFIKASI CITRA BATIK PEWARNA ALAMI DAN PEWARNA SINTETIS BERDASARKAN WARNA. 2020.

R. Nur Ariyanti and R. Cahya Wihandika, “Identifikasi Jenis Attention Deficit Hyperactivity Disorder (ADHD) Pada Anak Usia Dini Menggunakan Metode Modified K-Nearest Neighbor (MKNN),” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

Downloads

Published

2024-08-31