KLASIFIKASI SENTIMEN X-TWITTER PERIHAL PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN EKSTRAKSI FITUR TF-IDF DAN METODE SUPPORT VECTOR MACHINE (SVM)
DOI:
https://doi.org/10.47111/jti.v18i2.15015Keywords:
Klasifikasi Sentimen, Pemindahan Ibu Kota, X-Twitter, TF-IDF, Support Vector Machine (SVM)Abstract
The classification model has reached the realm of sentiment classification to analyze user sentiment in providing comments. this research aims to classify sentiment regarding the topic of moving the capital city of Indonesia using the Support Vector Machine (SVM) method with TF-IDF weighting. SVM has its own advantages, namely to overcome complex problems in SVM classification using the kernel function. the kernel functions to transform input data into a high dimensional feature space, allowing linear separation of data more easily. there are 3 sentiment categories in this study, namely Negative, Neutral and Positive sentiment. to determine these 3 categories, researchers used expert labelling services. the purpose of this study using the SVM method and TF-IDF feature extraction is to find out and analyze the accuracy results obtained in processing sentiment data regarding the transfer of the capital city of Indonesia. The accuracy results obtained are 64%, this shows that the SVM method with TF-IDF weighting is able to classify sentiment data with fairly good results.
Downloads
References
W. Liano Hutasoit, “ANALISA PEMINDAHAN IBUKOTA NEGARA”.
M. K. Saraswati et al., “Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis Swot,” Jurnal Ilmu Sosial dan Pendidikan (JISIP), vol. 6, no. 2, pp. 2598– 9944, 2022, doi: 10.36312/jisip.v6i1.3086/http.
S. D. Saputra, T. Gabriel J, and M. Halkis, “ANALISIS STRATEGI PEMINDAHAN IBU KOTA NEGARA INDONESIA DITINJAU DARI PERSPEKTIF EKONOMI PERTAHANAN (STUDI KASUS UPAYA PEMINDAHAN IBU KOTA NEGARA DARI DKI JAKARTA KE KUTAI KARTANEGARA DAN PENAJAM PASER UTARA) STRATEGY ANALYSIS RELOCATION OF THE CAPITAL CITY OF INDONESIA FROM DEFENSE ECONOMIC PERSPECTIVE (CASE STUDY OF RELOCATION OF THE CAPITAL CITY FROM DKI JAKARTA TO KUTAI KARTANEGARA AND PENAJAM PASER UTARA),” 2021.
D. Oktavia and Y. R. Ramadahan, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Media Online), vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 930, Aug. 2022, doi: 10.30865/jurikom.v9i4.4629.
V. Fitriyana et al., “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” 2023.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
O. Zoellanda ATane, K. Muslim Lhaksmana, and F. Nhita, “Analisis Sentimen pada Twitter Tentang Calon Presiden 2019 Menggunakan Metode SVM (Support Vector Machine).”
O. I. Gifari, M. Adha, I. Rifky Hendrawan, F. Freddy, and S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 2, no. 1, 2022.
J. Muliawan and E. Dazki, “SENTIMENT ANALYSIS OF INDONESIA’S CAPITAL CITY RELOCATION USING THREE ALGORITHMS: NAÏVE BAYES, KNN, AND RANDOM
FOREST,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 5, pp. 1227–1236, 2023, doi: 10.52436/1.jutif.2023.4.5.347.
M. Persada Pulungan, A. Purnomo, A. Kurniasih, S. Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ, and P. Korespondensi, “PENERAPAN SMOTE UNTUK MENGATASI IMBALANCE CLASS DALAM KLASIFIKASI KEPRIBADIAN MBTI MENGGUNAKAN NAIVE BAYES CLASSIFIER APPLICATION OF SMOTE TO OVERCOME CLASS IMBALANCE IN THE MBTI PERSONALITY CLASSIFICATION USING THE NAÏVE BAYES CLASSIFIER,” vol. 10, no. 7, pp. 1493–1502, 2023, doi: 10.25126/jtiik.2023107989.
M. F. Asshiddiqi and K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI.”
A. Novantirani, M. S. Kania Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine.”
S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.
R. Guido, S. Ferrisi, D. Lofaro, and D. Conforti, “An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review,” Information (Switzerland), vol. 15, no. 4, Apr. 2024, doi: 10.3390/info15040235.
K. A. Lubis, M. Theo, A. Bangsa, and A. Yudertha, “ANALISIS SENTIMEN OPINI MASYARAKAT TERHADAP PINDAHNYA IBU KOTA INDONESIA DENGAN MENGGUNAKAN KLASIFIKASI NAÏVE BAYES,” 2024. [Online]. Available:
https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
O. Muhammad and I. Ramadhon, “ANALISIS SENTIMEN TERHADAP PEMINDAHAN IBU KOTA INDONESIA PADA MEDIA SOSIAL TWITTER MENGGUNAKAN METODE ALGORITMA K-NEAREST NEIGHBOR (K-NN) SKRIPSI.”
M. Putri Agustina, “Sentimen Masyarakat Terkait Perpindahan Ibukota Via Model Random Forest dan Logistic Regression,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 111–124, 2021.