APLIKASI SENTIMENT MONITORING UNTUK TWITTER DENGAN ALGORITMA NAIVE-BAYES CLASSIFIER
DOI:
https://doi.org/10.47111/jti.v15i1.1902Keywords:
sentiment monitoring twiiter naive-bayes classifierAbstract
Every day there are millions of opinion spread across social networks. This is often utilized by various parties to determine the opinion and sentiment of the public towards the product, brand or figures that they hold. Given the abundance of data and opinions, it is not possible to do sentiment analysis manually. In this research, author performs design and implementation of sentiment monitoring application, that could monitor people’s sentiment about a particular keyword, so it is known how the people response to those keywords, whether positive, negative or neutral.
From various existing social networks, Twitter is chosen as the source of data that will be monitored. Classification algorithm used here is Naive-Bayes Classifier with Boolean Multinomial model, and feature extraction using unigram word. The training data used is 400,000 data for each type of sentiment, so the total is 1.200.000 data. In the process of classification and training, application will perform stemming to take the root words contained within the tweet. Stemming algorithm used here is Confix Stripping.
The methodology of application development that used here is staged delivery. Implementation of application is done using PHP programming language. The result of this research is a sentiment monitoring application that can monitor public sentiment about a particular keyword in a particular time frame. From testing using k-fold cross validation, obtained accuracy rate for sentiment classification amounted to 85%.
Downloads
References
Al Fatta, H. (2017). Analisis dan Perancangan Sistem Informasi untuk Keunggulan Bersaing Perusahaan dan Organisasi Modern. Yogyakarta: Penerbit Andi
Arifin, Z.A.; Mahendra, I.P.A.K. & Ciptaningtyas, H.T. (2009). Enhanced Confix Stripping Stemmer and Ants Algorithm for Classifying News Document in Indonesian Language. Dalam acara 5th International Confe-rence on Information & Communication Technology and Systems (ICTS).
Ghulam Asrofi Buntoro. (2017). Sentiment Analysis to Prediction DKI Jakarta Governor 2017 on Indonesian Twitter. International Journal of Science, Engineering and Information Technology Trunojoyo.
Hidayatullah, A.F. & Azhari S.N. (2013). Analisis Sentimen dan Klasifikasi Kategori Terhadap Tokoh Publik pada Twitter. Dalam acara Seminar Nasional Informatika 2014 (semnasIF 2014) UPN “Veteran” Yogyakarta. Yogyakarta, 12 Agustus 2014.
Luhulima; Y.Y, Mardji dan Muflikhah L. (2013). “Sentiment Analysis pada Review Barang Berbahasa Indonesia dengan Metode K-Nearest Neighbor (K-NN)”. Repositori Jurnal Mahasiswa PTIIK UB. 2, (5).
Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006). Spam filtering with naive bayes-which naive bayes?. In CEAS, 17, 28-69.
Sergios Theodoridis. (2015). Machine Learning: A Bayesian and Optimization Perspective, Elsavier 2015.
V. Ikoro, M. Sharmina, K. Malik, and R. Batista-Navarro, ?Analyzing Sentiments Expressed on Twitter by UK Energy Company Consumers,? 2018 Fifth Int. Conf. Soc. Networks Anal. Manag. Secur., pp. 95–98, 2018.
U. R. Hodeghatta, ?Sentiment Analysis of Hollywood Movies on Twitter,? Proc. 2013 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min., pp. 1401–1404, 2013.
R. Sandoval-Almazan and D. Valle-Cruz, ?Facebook Impact and Sentiment Analysis on Political Campaigns,? Proc. 19th Annu. Int. Conf. Digit. Gov. Res. Gov. Data Age, pp. 561–567, 2018
U. Yaqub, S. A. Chun, V. Atluri, and J. Vaidya, ?Sentiment based Analysis of Tweets during the US Presidential Elections,? Present. Proc. 18th Annu. Int. Conf. Digit. Gov. Res., pp. 149–156, 2017
C. V. S. Araujo, R. M. Neto, F. N. G., and E. F. Nakamura, ?Predicting Music Success Based on Users’ Comments on Online Social Networks,? Proc. 23rd Brazillian Symp. Multimed. Web, pp. 1–10, 2017