DETEKSI GERAK BERDASARKAN FITUR WAJAH MENGGUNAKAN METODE KANADE LUCAS TOMASI (KLT)
DOI:
https://doi.org/10.47111/jti.v19i2.19848Keywords:
Implementation, Kanade Lucas Tomasi (KLT), Motion Detection, Facial Features, AccuracyAbstract
Research by utilizing facial recognition features related to image processing and computer vision is used to produce a system that is almost close to the human visual system in general. In image processing, the detection of the movement of the rig is carried out so as to produce detection results. A problem that often occurs in the motion detection process is that every moving object in the video will be detected as a moving object. Therefore, this study will try to detect human face objects from the video data to be detected so that the detection results will later produce the detection of face objects. Every process of observing human facial movements requires a careful pre-process stage, because it is related to the observation of very smooth movements and a very fast duration. At this stage, the detection and tracking of the facial area must always be precise so that the observation of movements made in the facial area can be accurate. The solution offered for facial motion detection is to apply the Canade Lucas Tomasi (KLT) method for tracking each feature point. The performance process of KLT in detecting faces is to track each existing face by looking at the point of facial features, after the system records the features of the face, the system will detect every facial movement in the video. So by using the KLT method, it is hoped that the system can detect facial objects in the video. The results of the study by testing as many as 30 samples of video data in the form of recordings of human motion objects succeeded in detecting facial movements with an accuracy level of 96%, Recal 88% and an accuracy level of 86%.
References
T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” J. Heal. Sains, vol. 2, no. 3, pp. 534–545, 2021, doi: 10.46799/jsa.v2i3.202.
M. A. Taqy, C. A. Yahya, M. Al Hafizh, and S. Nurakmalia, “Implementasi dan Analisis Metode Deteksi Tepi Canny Menggunakan OpenCV,” J. AI dan SPK J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 4, pp. 303–306, 2024.
F. H. Laia, R. Rosnelly, A. Naswar, K. Buulolo, and M. Christin Lase, “Deteksi Pengenalan Wajah Orang Berbasis AI Computer Vision,” Teknol. Inf. Mura, vol. 15, no. 1, pp. 61–71, 2023.
P. Choirina and U. D. Rosiani, “Detection and Tracking of Face Location in the Pre-processing Stage of Recognition of Micro Expressions Using the Kanade-Lucas-Tomasi (KLT) Method,” J. Inform. Polinema, vol. 7, no. 1, pp. 73–78, 2020, doi: 10.33795/jip.v7i1.467.
M. A. Aziz, R. Wulanningrum, and D. Swanjaya, “Studi Perbandingan Perbaikan Kualitas Citra Gestur Tangan Menggunakan Metode Histogram Equalization Dengan Adaptive Histogram Equalization,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 161, 2021, doi: 10.21107/nero.v6i2.239.
Novran, E. Febrian, N. H. Hallatu, P. Hidayahni, M. R. Arrasyid, and Abdiansah, “Aplikasi Deteksi Masker Wajah menggunakan Metode Deep Learning dan Image Processing pada Model AI Sederhana,” Just IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 14, no. 3, pp. 150–233, 2024, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
M. A. Gunawan, H. S. Purba, N. A. B. Saputra, N. Wiranda, and M. H. Adini, “Perancangan Pendeteksi Wajah dengan Metode Haar Cascade dan Local Binary Pattern Berbasis OpenCV,” Comput. Educ. Technol. J., vol. 4, no. 1, p. 7, 2024, doi: 10.20527/cetj.v4i1.12332.
B. Prakoso and F. Ramadhanti, “Pembangkitan Kunci Berdasarkan Pengenalan Wajah,” J. Info Kripto, vol. 18, no. 1, pp. 1–8, 2024.
H. Sajati, “Analisis Kualitas Perbaikan Citra Menggunakan Metode Median Filter Dengan Penyeleksian Nilai Pixel,” Angkasa J. Ilm. Bid. Teknol., vol. 10, no. 1, p. 41, 2018, doi: 10.28989/angkasa.v10i1.223.
U. D. Rosiani and P. Choirina, “Pendeteksian dan Pelacakan Lokasi Wajah pada Tahap Pra-pemrosesan Pengenalan Ekspresi Mikro Menggunakan Metode Kanade-Lucas-Tomasi (KLT),” J. Inform. Polinema, vol. 7, no. 1, pp. 73–78, 2020.
A. Pradana, E. Paulus, and D. Setiana, “Deteksi Wajah dengan Berbagai Posisi Sudut pada Sekumpulan Orang dengan Membandingkan,” Janapati, vol. 5, pp. 136–141, 2016.
M. K. Janah and V. Lusiana, “Sistem Pencatatan Kehadiran Deteksi Wajah Menggunakan Metode Haar Feature Cascade Classifier,” J. Ilm. Giga, vol. 24, no. 1, p. 9, 2021, doi: 10.47313/jig.v24i1.1134.
A. W. Wibowo, A. Karima, Wiktasari, A. Yobioktabera, and S. Fahriah, “Pendeteksian dan Pengenalan Wajah Pada Foto Secara Real Time Dengan Haar Cascade dan Local Binary Pattern Histogram,” JTET (Jurnal Tek. Elektro Ter., vol. Vol. 9 No., pp. 6 – 11, 2020.
Yovi Apridiansyah, A. Wijaya, Pahrizal, Rozali Toyib, and Arif Setiawan, “Pengolahan Citra Berbasis Video Proccesing dengan Metode Frame Difference untuk Deteksi Gerak,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 81–89, 2024, doi: 10.52158/jacost.v5i1.790.