OPTIMASI MODEL DETEKSI ALERGEN PADA PRODUK PANGAN DENGAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN ADAPTIVE BOOSTING (ADABOOST)
DOI:
https://doi.org/10.47111/jti.v19i2.21316Keywords:
Allergen, Data Mining, Support Vector Machine, AdaBoost, Hand-Out Validation, Split Validation, Cross ValidationAbstract
One important aspect that needs to be considered in food production is food safety. The implementation of this food safety aspect includes food products that avoid contamination of chemical, physical, and biological substances that can be harmful to human health. In the implementation of the Makan Bergizi Gratis (MBG) program, problems were found related to allergies in the recipients of this assistance program. According to the World Health Organization (WHO), food allergies are ranked as the fourth most serious public health problem, and the only effective treatment for allergy sufferers is to avoid foods that contain allergens. Allergens themselves are compounds or food ingredients that cause allergies and/or intolerances. Laboratory tests of food products for allergen testing that are still carried out traditionally require a lot of time and money, making food producers reluctant to carry out product testing. A way to detect allergen content in food products that is easier, more practical, and more accurate is needed. The research conducted aims to build a prediction model that can be used to detect allergen content in food ingredients through the implementation of the Support Vector Machine (SVM) data mining algorithm optimized with the Adaptive Boosting ensemble learning boosting algorithm (AdaBoost). The research conducted obtained a model that produces the most optimal performance, namely SVM optimized with the AdaBoost algorithm with the split validation method.
References
Sabarella, W. B. Komalasari, M. Manurung, M. D. N. Saida, K. Seran, and Y. Supriyati, Buletin Konsumsi Pangan, vol. 15, no. 1. Jakarta: Pusat Data dan Sistem Informasi Pertanian - Sekretariat Jenderal, Kementerian Pertanian, 2024.
N. Latifasari, F. T. Syifa, F. C. Agustia, C. Raharditya, S. A. Cahyani, and P. A. Rini, “Peningkatan Pengetahuan Pentingnya Keamanan Pangan dalam Sistem Produksi Yoghurt Drink Melalui Sosialisasi di UKM Yoghurt Sehati Banyumas,” JURPIKAT: Jurnal Pengabdian Kepada Masyarakat, vol. 6, no. 1, pp. 92–100, 2025, doi: https://doi.org/10.37339/jurpikat.v6i1.1981.
R. T. Cahyani, Rusmiati, Ngadino, and Narwati, “Kondisi Sanitasi dan Personal Hygiene Industri Tempe di Desa Sambirembe Kecamatan Karangrejo Kabupaten Magetan,” Jurnal Sanitasi Lingkungan, vol. 2, no. 2, pp. 101–106, 2022, doi: https://doi.org/10.36086/jsl.v2i2.1398.
N. M. Putri, A. R. Gati, S. A. Cahyani, S. Q. Adifaputra, U. Maghfiroh, and N. Latifasari, “Penyuluhan Keamanan Pangan di UKM Produk Manisan Buah Pepaya Desa Karangsalam Kabupaten Banyumas,” IJCOSIN: Indonesia Journal of Community Service and Innovation, vol. 4, no. 2, pp. 56–65, 2024, doi: https://doi.org/10.20895/ijcosin.v4i1.1489.
Humas KPAI, “KPAI Soroti Kendala dalam Program Makanan Bergizi Gratis, Tegaskan Pentingnya Pengawasan dan Koordinasi,” 24 Januari 2025, 2025. https://www.kpai.go.id (accessed Jun. 09, 2025).
S. S. Hamid, “Food Allergy and Physiology: A Review Article,” Indonesian Journal on Health Science and Medicine, vol. 2, no. 2, pp. 1–9, 2025, doi: https://doi.org/10.21070/ijhsm.v2i2.108.
Direktorat Standardisasi Pangan Olahan, Pedoman Implementasi Pelabelan Pangan Olahan. Jakarta: Direktorat Standardisasi Pangan Olahan, Deputi Bidang Pengawasan Pangan Olahan, Badan Pengawas Obat dan Makanan Republik Indonesia, 2019.
Badan Pengawas Obat dan Makanan Republik Indonesia, Peraturan Badan Pengawas Obat dan Makanan Nomor 31 Tahun 2018 tentang Label Pangan Olahan. Indonesia, 2018.
D. C. Aryani et al., Panduan Pencantuman Label Pangan Segar. Jakarta: Badan Pangan Nasional, 2023.
F. Sarlakifar, H. Malek, N. A. Fard, and Z. Khotanlou, “AllerTrans: A Deep Learning Method for Predicting the Allergenicity of Protein Sequences,” bioRxiv, vol. 08.09, no. 607419, pp. 1–12, 2024, doi: https://doi.org/10.1101/2024.08.09.607419.
J. K. Wororomi et al., Data Mining (Memahami Pola di Balik Angka). Purbalingga: CV Eureka Media Aksara, 2024.
Amna et al., Data Mining. Padang: PT Global Eksekutif Teknologi, 2023.
I. S. Aisah, B. Irawan, and T. Suprapti, “Algoritma Support Vector Machine (SVM) untuk Analisis Sentimen Ulasan Aplikasi Al Qur’an Digital,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, pp. 3759–3765, 2023, doi: https://doi.org/10.36040/jati.v7i6.8263.
A. Latif and S. K. Wildah, “Analisis Kinerja Algoritma Ensemble dalam Prediksi Perilaku Pembelian Pelanggan,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 9, no. 1, pp. 557–563, 2025, doi: https://doi.org/10.36040/jati.v9i1.12413.
S. Narulita, Sekarlangit, and M. P. Novianingrum, “Deteksi Alergen pada Produk Pangan Menggunakan Algoritma Support Vector Machines (SVM),” BRIDGE: Jurnal publikasi Sistem Informasi dan Telekomunikasi, vol. 3, no. 1, pp. 64–76, 2025, doi: https://doi.org/10.62951/bridge.v3i1.393.
A. A. G. A. Maheswara, L. Fanani, and A. H. Brata, “Pengembangan Aplikasi Deteksi Allergen pada Makanan Menggunakan Convolutional Neural Network Berbasis Android,” JPTIIK: Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 6, pp. 1–16, 2024, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13862.
A. Kumar and P. S. Rana, “A Deep Learning based Ensemble Approach for Protein Allergen Classification,” PeerJ Computer Science, vol. 9, no. e1622, pp. 1–26, 2023, doi: https://doi.org/10.7717/peerj-cs.1622.
Z. Ahmad, A. Farooq, M. Fuzail, Y. Aziz, and N. Aslam, “Food Allergy Detection using Machine Learning Approach,” KJMR: Kashf Journal of Multidisciplinary Research, vol. 2, no. 4, pp. 116–127, 2025, doi: https://doi.org/10.71146/kjmr402.
J. Ahmad et al., “Utilizing Deep Learning Techniques for Detecting and Analyzing Food Allergies,” KJMR: Kashf Journal of Multidisciplinary Research, vol. 2, no. 3, pp. 46–60, 2025, doi: https://doi.org/10.71146/kjmr332.
R. Oktafiani, A. Hermawan, and D. Avianto, “Pengaruh Komposisi Split Data terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning,” JSI: Jurnal Sains dan Informatika, vol. 9, no. 1, pp. 19–28, 2023, doi: https://doi.org/10.34128/jsi.v9i1.622.
M. Amelia and S. Ratnasari, “Analisis Tingkat Kepuasan Pengguna Aplikasi Shopee Menggunakan Algoritma Decision Tree,” Kohesi: Jurnal Multidisiplin Saintek, vol. 7, no. 4, pp. 81–90, 2025, doi: https://doi.org/10.3785/kohesi.v7i4.11758.
F. Putrawansyah and T. Susanti, “Penerapan Metode Support Vector Machine terhadap Klasifikasi Jenis Jambu Biji,” JIKO: Jurnal Informatika dan Komputer, vol. 8, no. 1, pp. 193–204, 2024, doi: http://dx.doi.org/10.26798/jiko.v8i1.988.
M. R. Saputro, U. Mahdiyah, and D. Swanjaya, “Perbandingan Metode Adaptive Boosting dan Extreme Gradient Boosting untuk Prediksi Hasil Pertandingan Liga Spanyol,” Jurnal Nusantara Engineering, vol. 7, no. 1, pp. 67–73, 2024, doi: https://doi.org/10.29407/noe.v7i1.20882.
R. Mashitapasha, F. Damayanti, and D. A. Fatah, “Penerapan Metode Decision Tree dalam Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma C4.5,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 9, no. 3, pp. 4016–4023, 2025, doi: https://doi.org/10.36040/jati.v9i3.13532.
Amrin, O. Pahlevi, and H. Rianto, “Analisa Komparasi Model Data Mining Algoritma C4.5, CHAID, dan Random Forest Untuk Penilaian Kelayakan Kredit,” CO-SCIENCE: Computer Science, vol. 5, no. 1, pp. 49–57, 2025, doi: https://doi.org/10.31294/coscience.v5i1.6208.
A. Desiani, A. Amran, Y. Andriani, T. Wahyuni, and F. Rizki, “Perbandingan Algoritma Logistic Regression dan Adaptive Boosting (AdaBoost) dalam Klasifikasi Penyakit Gagal Jantung,” JTI: Jurnal Teknologi Informasi, vol. 19, no. 1, pp. 71–78, 2025, [Online]. Available: https://e-journal.upr.ac.id/index.php/JTI/article/view/17173.