PENERAPAN METODE HYBRID-BASED RECOMMENDATION PADA SISTEM REKOMENDASI LAPTOP

Implementation of Hybrid-Based Recommendation Method in a Laptop Recommendation System

Authors

  • Nova Noor Kamala Sari Universitas Palangka Raya
  • Efrans Christian Universitas Palangka Raya
  • Rizky Alparez Rati Universitas Palangka Raya

DOI:

https://doi.org/10.47111/jti.v19i1.22585

Keywords:

Hybrid-Based Recommendation, Content-Based Filtering, Collaborative Filtering, TF-IDF, cosine similarity, Singular Value Decomposition

Abstract

Recommendation systems play a crucial role in helping users choose complex and diverse products, such as laptops, which have numerous and varied technical attributes.  This research aims to implement a Hybrid-Based Recommendation method that combines Content-Based Filtering (CBF) and Collaborative Filtering (CF).  CBF is implemented using TF-IDF Vectorization and cosine similarity to recommend laptops based on technical attribute similarity.  Concurrently, CF uses Singular Value Decomposition (SVD) to predict user preferences based on rating history.  A Cascade Hybrid strategy is applied by filtering initial candidates from CBF and then re-ranking them using rating predictions from CF.  The dataset comprises laptop data and user ratings obtained from Kaggle.  Evaluation is performed using the NDCG metric to measure the relevance order of recommendations and MAPE to assess prediction accuracy.  The research results indicate that this hybrid system is capable of generating relevant and personalized recommendations, with an NDCG value of 0.9838 and a MAPE value of 27.94%.  The study concludes that the integration of CBF and CF through a hybrid approach effectively produces relevant and effective recommendations.  For future development, exploring other hybrid methods, parameter optimization, and direct user testing are suggested.

References

A. Wijaya and D. Alfian, “Sistem Rekomendasi Laptop menggunakan Collaborative Filtering dan Content-Based Filtering,” Jurnal Computech & Bisnis, vol. 12, no. 1, pp. 11–27, 2018.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

G. Parthasarathy and S. Sathiya Devi, “Hybrid Recommendation System Based on Collaborative and Content-Based Filtering,” Cybernetics and Systems, vol. 54, no. 4, pp. 432–453, 2023.K. Elissa, “Title of paper if known,” unpublished.

Jadon, A., Patil, A. (2025). A Comprehensive Survey of Evaluation Techniques for Recommendation Systems. In: Bairwa, A.K., Tiwari, V., Vishwakarma, S.K., Tuba, M., Ganokratanaa, T. (eds) Computation of Artificial Intelligence and Machine Learning. ICCAIML 2024. Communications in Computer and Information Science, vol 2185. Springer, Cham. https://doi.org/10.1007/978-3-031-71484-9_2

Chandra, D. A., Santosa, F., & Wahyudi, S. (2021). Penerapan Metode Item Base Collaborative Filtering Berbasis Web Pada Recommender System Laptop. Engineering and Technology International Journal (EATIJ), 3(02), 70.

Daniel Jurafsky and James H. Martin. 2025. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition with Language Models, 3rd edition. Online manuscript released January 12, 2025.https://web.stanford.edu/~jurafsky/slp

F. Putra Utama, T. Mardiansyah, R. Faurina, and A. Vatresia, “SCIENTIFIC ARTICLES RECOMMENDATION SYSTEM BASED ON USER’S RELATEDNESS USING ITEM-BASED COLLABORATIVE FILTERING METHOD”, J. Tek. Inform. (JUTIF), vol. 4, no. 3, pp. 467-475, Jun. 2023.

Johari, M., & Laksito, A. (2021). The Hybrid Recommender System of the Indonesian Online Market Products using IMDb weight rating and TF-IDF. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(5), 977 - 983.

Lianhuan Li, Zheng Zhang, Shaoda Zhang, "Hybrid Algorithm Based on Content and Collaborative Filtering in Recommendation System Optimization and Simulation", Scientific Programming, vol. 2021, Article ID 7427409, 11 pages, 2021.

Loukili, M., & Messaoudi, F. (2024). Collaborative Singular Value Decomposition with user-item interaction expansion for first-time user and item recommendations. International Journal of Informatics and Communication Technology, 14(1), 111. https://doi.org/10.11591/ijict.v14i1.pp111-121

Ni, Jianjun, Yu Cai, Guangyi Tang, and Yingjuan Xie. 2021. "Collaborative Filtering Recommendation Algorithm Based on TF-IDF and User Characteristics" Applied Sciences 11, no. 20: 9554. https://doi.org/10.3390/app11209554

V. Atina and D. Hartanti, “KNOWLEDGE BASED RECOMMENDATION MODELING FOR CLOTHING PRODUCT SELECTION RECOMMENDATION SYSTEM”, J. Tek. Inform. (JUTIF), vol. 3, no. 5, pp. 1407-1413, Oct. 2022.

Yassine Afoudi, Mohamed Lazaar, Mohammed Al Achhab, Hybrid recommendation system combined Content-Based Filtering and collaborative prediction using artificial neural network, Simulation Modelling Practice and Theory, Volume 113, 2021, 102375, ISSN 1569-190X

Santoso, F., Wahyudi, S., & Chandra, D. A. (2025). Sistem Rekomendasi Laptop Menggunakan Metode Collaborative Filltering Dan Weighted Product Pada Toko Online Indojaya Computer. Seminar Nasional Teknologi & Sains, 4(1), 594-604.

Suwandy, N. I. F., Fathonah, R. N. S., & Prianto, C. (2023). IMPLEMENTASI SISTEM REKOMENDASI LAPTOP MENGGUNAKAN METODE CONTENT BASED FILTERING DAN K-MEANS BERBASIS MOBILE.

Ardiansyah, R., Bianto, M. A., & Saputra, B. D. (2023). Sistem Rekomendasi Buku Perpustakaan Sekolah menggunakan Metode Content-Based Filtering. Jurnal CoSciTech (Computer Science and Information Technology), 4(2), 510-518.

Downloads

Published

2025-08-31