KOMPARASI ALGORITMA DATA MINING UNTUK ANALISIS SENTIMEN APLIKASI PEDULILINDUNGI

Authors

  • Hiras Parasian Doloksaribu Universitas Advent Indonesia
  • Yusran Timur Samuel Universitas Advent Indonesia

DOI:

https://doi.org/10.47111/jti.v16i1.3747

Keywords:

Analisis Sentimen, Naive Bayes, Support Vector Machine, PeduliLindungi, TFIDF, Count Vectorizer

Abstract

The COVID-19 pandemic has caused many changes to occur in Indonesia. In the PeduliLindungi application to the community, the government makes the application to the community in the hope of being able to provide a warning if it enters the covid-19 zone and various other information from covid-19 [1]. The main purpose of this study is to analyze the sentiments of PeduliLindungi users who are currently used during the Covid-19 pandemic, where this application has begun to be used to travel anywhere and anytime to find out whether the user has vaccinated or not and various other things. such as the spread of the virus and the location of vaccination. The dataset for this study was taken from the Play Store. The algorithm used is Support Vector Machine and Naive Bayes to classify the data set. The data collection technique is Text Mining and compares the results of the two specified algorithms. The results of this research are Support Vector Machine with TF IDF Vectorizer with 89.05% accuracy followed by Support Vector Machine with Count Vectorizer, Naive Bayes with TF IDF Vectorizer and Naive Bayes with Count Vectorizer.

Downloads

Download data is not yet available.

References

KEMENTERIAN KOMUNIKASI DAN INFORMATIKA, “PeduliLindungi,” Apa itu PeduliLindungi. https://www.pedulilindungi.id/ (diakses Nov 07, 2021).

I. W. Sudiarsa dan I. G. B. Wiraditya, “Analisis Usability Pada Aplikasi Peduli Lindungi Sebagai Aplikasi Informasi Dan Tracking Covid-19 Dengan Heuristic Evaluation,” INTECOMS, vol. 3, no. 2, hlm. 354–364, Desember 2020, doi: 10.31539/intecoms.v3i2.1901.

P. Herino, “Klasifikasi Sentimen Layanan Ojek Online Menggunakan Metode Naive Bayes Classifier,” Skripsi, Universitas Islam Negeri Sultan Syarif Kasim, Riau, 2018. Diakses: Nov 08, 2021. [Daring]. Tersedia pada: http://repository.uin-suska.ac.id/id/eprint/15975

T. Mardiana, H. Syahreva, dan T. Tuslaela, “Komparasi Metode Klasifikasi Pada Analisis Sentimen Usaha Waralaba Berdasarkan Data Twitter,” J. PILAR Nusa Mandiri, vol. 15, no. 2, hlm. 267–274, Sep 2019, doi: 10.33480/pilar.v15i2.752https://doi.org/10.33480/pilar.v15i2.752.

P. S. M. Suryani, L. Linawati, dan K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, hlm. 145–148, Apr 2019, doi: 10.24843/MITE.2019.v18i01.P22.

F. Fitriyani dan T. Arifin, “Penerapan Word N-Gram Untuk Sentiment Analysis Review Menggunakan Metode Support Vector Machine (Studi Kasus: Aplikasi Sambara),” SISTEMASI, vol. 9, no. 3, hlm. 610, Sep 2020, doi: 10.32520/stmsi.v9i3.954.

E. K. Putri dan T. Setiadi, “Penerapan Text Mining Pada Sistem Klasifikasi,” JSTIF, vol. 2, no. 3, hlm. 73–83, Oktober 2014, doi: 10.12928/jstie.v2i3.2877.

N. R. Ain, “Text Mining Dengan Metode Naive Bayes Classifier Untuk Mengklasifikasikan Berita Berdasarkan Konten,” Institut Teknologi Sepuluh November, Surabaya, 2018. Diakses: Nov 07, 2021. [Daring]. Tersedia pada: https://repository.its.ac.id/51007/1/1213100009-Undergraduate_Theses.pdf

A. Hermanto, “Implementasi Text Mining Menggunakan Naive Bayes Untuk Penentuan Kategori Tugas Akhir Mahasiswa Berdasarkan Abstraksinya,” KONVERGENSI, vol. 12, no. 2, hlm. 1–10, Jul 2016, doi: 10.30996/konv.v12i2.1310.g1107.

I. Ernawati, “Naive Bayes Clasifier Dan Support Vector Machine Sebagai Alternatif Solusi Untuk Text Mining,” J. Teknol. Inf. Dan Pendidik., vol. 12, no. 2, hlm. 33–39, Desember 2019, doi: 10.24036/tip.v12i2.219.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, hlm. 50–59, Jun 2018, doi: 10.35314/isi.v3i1.335.

O. Somantri, S. Wiyono, dan D. Dairoh, “Optimalisasi Support Vector Machine (SVM) Untuk Klasifikasi Tema Tugas Akhir Berbasis K-Means,” TELEMATIKA, vol. 13, no. 2, hlm. 59–68, Jul 2016, doi: 10.31315/telematika.v13i2.1722.

D. Gunawan, D. Riana, D. Ardiansyah, F. Akbar, dan S. Alfarizi, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023,” J. PILAR Nusa Mandiri, vol. 6, no. 1, hlm. 121–129, Jan 2020.

A. Priyanto dan M. R. Ma’arif, “Implementasi Web Scraping dan Text Mining untuk Akuisisi dan Kategorisasi Informasi Laman Web Tentang Hidroponik,” IJIS, vol. 1, no. 1, hlm. 25–33, Agustus 2018.

S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, dan R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 1, hlm. 157–163, Jan 2021, doi: 10.30865/mib.v5i1.2580.

I. Ihsan, “Sentiment Analysis RKUHP Pada Twitter Menggunakan Metode Support Vector Machine,” E-Proceeding Eng., vol. 8, no. 2, hlm. 3521–3536, Apr 2021.

N. Haqqizar dan T. N. Larasyanti, “Analisis Sentimen Terhadap Layanan Provider Telekomunikasi Telkomsel Di Twitter Dengan Metode Naïve Bayes,” TAU SNAR-TEK, vol. 1, no. 1, hlm. 30–33, Nov 2019.

S. Khairunnisa, A. Adiwijaya, dan S. A. Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, hlm. 406–414, Apr 2021, doi: 10.30865/mib.v5i2.2835.

Downloads

Published

2022-01-31