PERBANDINGAN WAKTU EKSEKUSI PERAMALAN HARGA KOMODITAS PANGAN MENGGUNAKAN SPARKR DAN R STUDIO

Authors

  • Dedy Sugiarto Universitas Trisakti
  • Dimmas Mulya
  • Abdul Rochman
  • Is Mardianto

DOI:

https://doi.org/10.47111/jti.v16i1.3911

Keywords:

Peramalan Big data, Harga Komoditas Pangan, SparkR, R studio, Multilayer Perceptron

Abstract

The arrival of the big data era with characteristics such as large volumes of data makes the calculation of execution time a concern when carrying out data analytics processes, such as forecasting food commodity prices. This study aims to examine the effect of the big data framework through the use of sparkR. The test is carried out by varying several deep learning forecasting models, namely the multi-layer perceptron model and by using the price of one food commodity from 2018 to 2020. The results show that sparkR is significantly shorter its execution time when compared to R studio. The results of testing the influence of the MLP model also show that a model with two hidden layers with a maximum node of 13 nodes in hidden layers 1 and 2 produces the longest execution time compared to only using 1 hidden layer with 5 nodes or using two hidden layers with a number of nodes of 5 and 3.

Downloads

Download data is not yet available.

References

L. Wang, J. Feng, X. Sui, X. Chu, and W. Mu,”Agriculture product price forecasting method : research advances and trend,” British Food Journal, vol. 122, no. 7, pp. 2121-2138. Januari. 2020

M. E. Lasulika,”Prediction of corn commodities using k-NN and particle swarm optimization as a selection feature,”ILKOM:Jurnal Ilmiah, vol. 9, no. 3, December 2017

H. Wu, H. Wu, M. Zhu. W. Chen, W. Chen, ' Anew method of large-scale short-term forecasting of agricultural commodity prices : illustrated by the case of agricultural markets in Beijing,”Journal of Big Data, vol. 4, no. 1, pp. 1-22, 2017

B. Lim and S. Zohren,”Time-series forecasting with deep learning : a survey.” Philosophical Transactions, Juli 2020

S. Sen, D. Sugiarto, A. Rochman, Rice Price Prediction Using Multilayer Perceptron (MLP) and Long Short Term Memory (LSTM). Ultimatics : Jurnal Teknik Informatika, Vol 12 No 1 (2020)

A. B. Ariwibowo, D. Sugiarto, I.A.Marie, J.A.Siahaan, Peramalan harga beras IR64 kualitas III menggunakan metode Multi Layer Perceptron, Holt-Winters dan Auto Regressive Integrated Moving Average, Ultimatics : Jurnal Teknik Informatika, Vol 11 No 2 (2019)

I. Mardianto, M.I. Gunawan, D. Sugiarto, A. Rochman, Perbandingan Peramalan Harga Beras Menggunakan Metode ARIMA pada Amazon Forecast dan Sagemaker, Jurnal Resti, Vol 4 No 3 (2020)

M. R. Faisal, D. T. Nugrahadi, “Belajar Data Science: Klasifikasi dengan Bahasa Pemrograman R”, Vol. 1, Google: M. R. Faizal, 2017. Access on: Aug. 1, 2021. [Online]. Available: https://books.google.co.id/books?id=svXUDQAAQBAJ

MPJ. Van der Loo, “Learning RStudio for R statistical computing”, Packt Publishing Ltd. 2012

P. U. Gio, A. R. Effendie, “Belajar Bahasa Pemrograman R”, 2018.

S. Salloum, R. Dautov, X. Chen et al., “Big data analytics on Apache Spark”, International Journal of Data Science and Analytics, Vol. 1, No. 3, pp. 145-164, 2016.

https://spark.apache.org/

L. Noriega, "Multilayer perceptron tutorial." School of Computing. Staffordshire University. 2005.

C. Krome, V. Sander, Time series analysis with apache spark and its applications to energy informatics, Proceeding of Conference on Energy Informatics , Oldenburg, Germany. 11-12 October 2018

G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series,” Eur. J. Oper. Res., vol. 160, no. 2, pp. 501–514, 2005, doi: 10.1016/j.ejor.2003.08.037.

Downloads

Published

2022-01-31