Analysis of Microscopy and RDT Performance in Detecting Malaria Among Suspected Patients at Arso III Health Center
DOI:
https://doi.org/10.37304/jkupr.v13i2.23060Keywords:
Malaria, microscopy, rapid diagnostic test, sensitivity, specificityAbstract
Malaria remains a significant public health problem in Papua. Keerom is one of the districts with a high incidence of malaria. This study aims to evaluate the performance of the Rapid Diagnostic Test (RDT) in comparison to microscopic examination, the gold standard for malaria diagnosis. This descriptive analytic study involved 40 suspected malaria patients at Arso III Health Center, Skanto District, Keerom Regency, Papua. Blood samples were examined using thick blood smears, thin blood smears, and the Care Start RDT. The study employed a cross-sectional design with purposive sampling. Microscopic examination identified five positive cases, corresponding to 12.5 percent, while the RDT detected nine positive cases, representing 22.5 percent of the total. The diagnostic analysis of the RDT revealed a sensitivity of 100 percent, a specificity of 88.6 percent, a positive predictive value of 55.6 percent, and a negative predictive value of 100 percent. The McNemar test showed a significant difference, p = 0.046. RDT proved reliable for excluding malaria, as no false-negative results were found. However, positive results require confirmation by microscopy or PCR to avoid misidentification and treatment errors.
Downloads
References
Nelwan, E. J. (2024). The efforts to implement a malaria elimination strategy in the highly endemic malaria region of Papua Province, Indonesia. Acta Medica Indonesiana, 56(4), 441-. https://www. actamedindones.org/index.php/ijim/article/view/2953.
Aisyah, D. N., Sitompul, D., Diva, H., Tirmizi, S. N., Hakim, L., Surya, A., et al. (2024). The changing incidence of malaria in Indonesia: A 9-year analysis of surveillance data. Advances in Public Health, 2024(1), 2703477. doi: 10.1155/adph/2703477
Djaafara, B. A., Sherrard-Smith, E., Churcher, T. S., Fajariyani, S. B., Prameswari, H. D., Herdiana, H., et al. (2025). Spatiotemporal heterogeneity in malaria transmission across Indonesia: Analysis of routine surveillance data 2010–2019. BMC Medicine, 23(1), 136. doi: 10.1186/ s12916-025-03902-9
Setianingsih, E., & Sulistyaningrum, E. (2025). The impact of the malaria centre program on malaria incidence in Papua Province. Public Health in Practice, 100625. doi: 10.1016/j.puhip.2025.100625
Ipa, M., Widawati, M., Laksono, A. D., Kusrini, I., & Dhewantara, P. W. (2020). Variation of preventive practices and its association with malaria infection in eastern Indonesia: Findings from community-based survey. PLoS One, 15(5), e0232909. doi: 10.1371/journal.pone.0232909
Wei, H., Li, J., Liu, Y., Cheng, W., Huang, H., Liang, X., et al. (2023). Rapid and ultrasensitive detection of Plasmodium spp. parasites via the RPA-CRISPR/Cas12a platform. ACS Infectious Diseases, 9(8), 1534-1545. doi: 10.1021/acsin fecdis.3c00087
Arshad, Q. A., Ali, M., Hassan, S.-u., Chen, C., Imran, A., Rasul, G., et al. (2022). A dataset and benchmark for malaria life-cycle classification in thin blood smear images. Neural Computing and Applications, 34(6), 4473-4485. doi: 10.1007/ s00521-021-06602-
Maturana, C. R., De Oliveira, A. D., Nadal, S., Bilalli, B., Serrat, F. Z., Soley, M. E., et al. (2022). Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Frontiers in Microbiology, 13, 1006659. doi: 10.3389/fmicb.2022.1006659
Coro, F., De Maria, C., Mangano, V. D., & Ahluwalia, A. (2025). Technologies for the point-of-care diagnosis of malaria: A scoping review. Infectious Diseases of Poverty, 14(1), 54. doi: 10.1186/s40249-025-01329-1
Sora-Cardenas, J., Fong-Amaris, W. M., Salazar-Centeno, C. A., Castañeda, A., Martínez-Bernal, O. D., Suárez, D. R., et al. (2025). Image-based detection and classification of malaria parasites and leukocytes with quality assessment of Romanowsky-stained blood smears. Sensors, 25(2), 390. doi:10.3390/s25020390
Shewajo, F. A., & Fante, K. A. (2023). Tile-based microscopic image processing for malaria screening using a deep learning approach. BMC Medical Imaging, 23(1), 39. doi:10.1186/s12880-023-00993-9
Dahal, P., Khanal, B., Rai, K., Kattel, V., Yadav, S., & Bhattarai, N. R. (2021). Challenges in laboratory diagnosis of malaria in a low-resource country at tertiary care in Eastern Nepal: A comparative study of conventional vs. molecular methodologies. Journal of Tropical Medicine, 2021(1), 3811318. doi:10.1155/2021/3811318
Ritung, N., Pijoh, V. D., & Bernadus, J. B. (2018). Perbandingan efektifitas rapid diagnostic test (RDT) dengan pemeriksaan mikroskop pada penderita malaria klinis di Puskesmus Mubune Kecamatan Likupang Barat. eBiomedik, 6(2). doi:10.35790/ebm.v6i2.20955
Watson, O. J., Sumner, K. M., Janko, M., Goel, V., Winskill, P., Slater, H. C., et al. (2019). False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Global Health, 4(4). doi: 10.1136/bmjgh-2019-001582
Feleke, D. G., Alemu, Y., & Yemanebirhane, N. (2021). Performance of rapid diagnostic tests, microscopy, loop-mediated isothermal amplification (LAMP) and PCR for malaria diagnosis in Ethiopia: A systematic review and meta-analysis. Malaria Journal, 20(1), 384. doi: 10.1186/s12936-021-03923-8
Wanja, E. W., Kuya, N., Moranga, C., Hickman, M., Johnson, J. D., Moseti, C., et al. (2016). Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malaria Journal, 15(1), 456. doi: 10.1186/s12936-016-1508-y
Opoku Afriyie, S., Addison, T. K., Gebre, Y., Mutala, A.-H., Antwi, K. B., Abbas, D. A., et al. (2023). Accuracy of diagnosis among clinical malaria patients: Comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malaria Journal, 22(1), 76. doi: 10.1186/s12936-023-04506-5
Wasena, S. A., Onyango, C. O., Osata, S. W., Anyona, S. B., Raballah, E., & Hurwitz, I., et al. (2025). Diagnostic accuracy of PfHRP2-based malaria rapid diagnostic tests and antigenemia persistence in Kenyan children from a holoendemic region: Implications for case management and surveillance. Experimental Biology and Medicine, 250, 10585. doi: 10.3389/ebm.2025.10585
Zhu, W., Ling, X., Shang, W., Du, Y., Liu, J., & Cao, Y., et al. (2020). High value of rapid diagnostic tests to diagnose malaria within children: A systematic review and meta-analysis. Journal of Global Health, 10(1), 010411. doi: 10.7189/jogh.10.010411
Bird, C., Hayward, G. N., Turner, P. J., Merrick, V., Lyttle, M. D., Mullen, N., et al. (2023). A diagnostic accuracy study to evaluate standard rapid diagnostic test (RDT) alone to safely rule out imported malaria in children presenting to UK emergency departments. Journal of the Pediatric Infectious Diseases Society, 12(5), 290-297. doi: 10.1093/jpids/piad024
Aidoo, M., & Incardona, S. (2021). Ten years of universal testing: How the rapid diagnostic test became a game changer for malaria case management and improved disease reporting. The American Journal of Tropical Medicine and Hygiene, 106(1), 29. doi: 10.4269/ajtmh.21-0643
Boyce, M. R., & O’Meara, W. P. (2017). Use of malaria RDTs in various health contexts across sub-Saharan Africa: A systematic review. BMC Public Health, 17(1), 470.
Lau, C.-S., & Aw, T.-C. (2021). Disease prevalence matters: Challenge for SARS-CoV-2 testing. Antibodies, 10(4), 50. doi: 10.1186/ s12889-017-4398-1
Kumleben, N., Bhopal, R., Czypionka, T., Gruer, L., Kock, R., Stebbing, J., et al. (2020). Test, test, test for COVID-19 antibodies: The importance of sensitivity, specificity and predictive powers. Public Health, 185, 88-90. doi: 10.1016/j. puhe.2020.06.006
Manrai, A. K., Bhatia, G., Strymish, J., Kohane, I. S., & Jain, S. H. (2014). Medicine’s uncomfortable relationship with math: Calculating positive predictive value. JAMA Internal Medicine, 174(6), 991-993. doi:10.1001/jamainternmed.2014.1059
Elfassy, L., Lasry, A., Gil, Y., & Balayla, J. (2021). Prevalence threshold of screening tests in obstetrics and gynecology. European Journal of Obstetrics & Gynecology and Reproductive Biology, 259, 191-195. doi: 10.1016/j. ejogrb.2021.02.015Get rights and content
Cronin, P., & Kelly, A. M. (2011). Influence of population prevalences on numbers of false positives: An overlooked entity. Academic Radiology, 18(9), 1087-1093. doi: 10.1016/j. acra.2011.04.011
Bell, D. R., Wilson, D. W., & Martin, L. B. (2005). False-positive results of a Plasmodium falciparum histidine-rich protein 2–detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. The American Journal of Tropical Medicine and Hygiene, 73(1), 199-203.
Manjurano, A., Omolo, J. J., Lyimo, E., Miyaye, D., Kishamawe, C., Matemba, L. E., et al. (2021). Performance evaluation of the highly sensitive histidine-rich protein 2 rapid test for Plasmodium falciparum malaria in North-West Tanzania. Malaria Journal, 20(1), 58. doi:10.1186/s12936-020-03568-z
Kiemde, F., Tahita, M. C., Bonko, M. d. A., Mens, P. F., Tinto, H., van Hensbroek, M. B., et al. (2018). Implementation of a malaria rapid diagnostic test in a rural setting of Nanoro, Burkina Faso: From expectation to reality. Malaria Journal, 17(1), 316. doi: 10.1186/s12936-018-2468-1
Budodo, R., Mandai, S. S., Bakari, C., Seth, M. D., Francis, F., Chacha, G. A., et al. (2025). Performance of rapid diagnostic tests, microscopy, and qPCR for detection of Plasmodium parasites among community members with or without symptoms of malaria in villages located in North-western Tanzania. Malaria Journal, 24(1), 115. doi: 10.1186/s12936-025-05361-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alwina et al.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.














