A Review: Development of Photocatalyst Materials and Its Performance for Humic Acid Removal in Peatwater
DOI:
https://doi.org/10.59032/jpsi.v1i1.5380Keywords:
Humic acid, Metal oxides, Peat water, Perovskite, PhotocatalyticAbstract
Peat is a wetland region in Indonesia with a very high water storage capacity. However, the amount of humic compounds obtained from the accumulation of organic substances in peat makes the water unable to be used for daily purposes. Peat water treatment with several methods has been carried out, such as coagulation, electrocoagulation, flocculation, and filtration. However, the result of clumping or filtering in such a way raises new environmental problems. One method which effective and efficient used in peat water treatment is photocatalytic. Several materials based-semiconductor was developed as a photocatalyst, another modification of photocatalyst is combining the adsorbent as a porous supporting photocatalyst which can improve its performance.
Downloads
References
Almu’minin, A. S. (2015). Sintesis dan Karakterisasi Film Lapis Tipis TiO₂ sebagai Pendegradasi Pewarna Tekstil Procion Red MX-8B. Jurusan Kimia Fakutas Matematika dan Ilmu Pengetahuan Alam Universitas Jember. https://doi.org/10.1017/CBO9781107415324.004
Amurugam, M. & Jagannathan, M. (2017). Synthesis and Characterization of CuS/CdS Photocatalyst with Enhanced Visible Light-Photocatalytic Activity. Journal of Nano Research, 48, 49–61. https://doi.org/10.4028/www.scientific.net/JNanoR.48.49
Andayani, W. & Bagyo, A. N. M. (2011). TiO₂ beads for photocatalytic degradation of humic acid in peat water. Indonesian Journal of Chemistry, 11(3), 253–257. https://doi.org/10.22146/ijc.21389
Aware, D. V & Jadhav, S. S. (2016). Synthesis, Characterization and Photocatalytic Applications of Zn-Doped TiO₂ Nanoparticles by Sol-Gel Method. Applied Nanoscience, 6, 965–972. https://doi.org/10.1007/s13204-015-0513-8
Baek, M. H., Hong, J. S., Yoon, J. W. & Suh, J. K. (2013). Photocatalytic Degradation of Humic Acid by Fe-TiO₂ Supported on Spherical Activated Carbon with Enhanced Activity. International Journal of Photoenergy, 4–9. https://doi.org/10.1155/2013/296821
Bey, S. (2009). Pengujian Kinerja Fotokatalis Berbasis TiO₂ Untuk Produksi Hidrogen Dari Air. Program Studi Teknik Kimia Fakultas Teknik, Universitas Indonesia, Depok.
Birben, N. C., Paganini, M. C., Calza, P., & Bekbolet, M. (2017). Photocatalytic degradation of humic acid using a novel photocatalyst: Ce-doped ZnO. Photochemical & Photobiological Science, 16, 24-30. https://doi.org/10.1039/C6PP00216A
Chen, X., Wu, Z., Gao, Z. & Ye, B. C. (2017). Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation. Nanomaterials, 7(258), 1–18. https://doi.org/10.3390/nano7090258
Daud, S., Asmura, J. & Sari, M. E. (2016). Pengolahan Air Gambut dengan Membran Ultrafiltrasi Sistem Aliran Cross Flow untuk Menyisihkan Zat Warna dengan Pengolahan Terdahulu Menggunakan Koagulan Zair dari Tanah Lempung Lahan Gambut. 110–114.
Durmus, Z., Kurt, B. Z., Durmus, A. (2019). Synthesis and Characterization of Graphene Oxide/Zinc Oxide (GO/ZnO) Nanocomposite and Its Utilization for Photocatalytic Degradation of Basic Fuchsin Dye. ChemistrySelect, 4(1), 271–278. https://doi.org/10.1002/slct.201803635
Dziedzic, J., Wodka, D., Nowak, P., Warszyński, P., Simon, C. & Kumakiri, I. (2010). Photocatalytic Degradation of the Humic Species as a Method of Their Removal from Water - Comparison of UV and Artificial Sunlight Irradiation. Physicochemical Problems of Mineral Processing, 45, 15–28.
Fakhri, A., Behrouz, S., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Synthesis and characterization of ZrO₂ and carbon-doped ZrO₂ nanoparticles for photocatalytic application. Journal of Molecular Liquids, 216, 342–346. https://doi.org/10.1016/j.molliq.2016.01.046
Fatimah, I., Yahya, A., Iqbal, R. M., Tamyiz, M., Doong, R. A., Sagadevan, S. & Oh, W. C. (2022). Enhanced Photocatalytic Activity of Zn-Al Layered Double Hydroxides for Methyl Violet and Peat Water Photooxidation. Nanomaterials, 12(10). https://doi.org/10.3390/nano12101650
Ghaneian, M. T., Tabatabaee, M., Morovati, P., Ehrampoush, M. H., & Dehghani, A. (2014). Photocatalytic degradation of humic acid by Ag/ZnO nanoparticles under UVC irradiation from aqueous solutions. Journals of Community Health Research, 3(2), 153–161.
Hadjltaief, H. B., Galvez, M. E., Zina, M. B., & Da Costa, P. (2019). TiO₂/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arabian Journal of Chemistry, 12(7), 1454–1462. https://doi.org/10.1016/j.arabjc.2014.11.006
Haris, A., Widodo, D. S. & Nuryanto, R. (2014). Sintesis dan Karakterisasi Nanopartikel TiO₂ dengan Doping Tembaga dan Sulfur serta Aplikasinya pada Degradasi Senyawa Fenol. Jurnal Sains Dan Matematika, 22(2), 48–51.
Iqbal, R. M., Wardani, D. A. P., Hakim, L., Damsyik, A., Safitri, R. & Fansuri, H. (2020). The Structural and Optical Band Gap Energy Evaluation of TiO₂-Fe₂O₃ Composite. IOP Conference Series: Materials Science and Engineering, 833(1). https://doi.org/10.1088/1757-899X/833/1/012072
Iqbal, R. M., Nurherdiana, S. D., Hartanto, D., Othman, M. H. D. & Fansuri, H. (2018). Morphological control of La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ catalytic membrane using PEG- H₂O additive. IOP Conference Series: Materials Science and Engineering, 348(1). https://doi.org/10.1088/1757-899X/348/1/012008
Iqbal, R. M., Nurherdiana, S. D., Sahasrikirana, M. S., Harmelia, L., Utomo, W. P., Setyaningsih, E. P. & Fansuri, H. (2018). The Compatibility of NiO, CeO2 and NiO-CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3-δ, La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ. IOP Conference Series: Materials Science and Engineering, 367(1). https://doi.org/10.1088/1757-899X/367/1/012032
Iqbal, R. M., Wardani, D. A. P., Hakim, L., Damsyik, A., Safitri, R. & Fansuri, H. (2020). The Structural and Optical Band Gap Energy Evaluation of TiO2-Fe2O3 Composite. IOP Conference Series: Materials Science and Engineering, 833(1). https://doi.org/10.1088/1757-899X/833/1/012072
Iqbal, R. M., Susanti, I., Abdul Rachman, R., Agusta Pradana, T. & Prasetya Toepak, E. (2021). Synthesis, Characterization, and Photocatalytic Activity of N-Doped TiO2/Zeolite-NaY for Methylene Blue Removal. The Journal of Pure and Applied Chemistry Research, 10(2), 132–139. https://doi.org/10.21776/ub.jpacr.2021.010.02.572
Jayadi, S. F., Destiarti, L. & Sitorus, B. (2014). Pembuatan Reaktor Fotokatalis dan Aplikasinya untuk Degradasi Bahan Organik Air GAmbut Menggunakan Katalis TiO₂. JKK, 3(3), 55–58.
Julius, M. F. (2016). TiO₂-Zeolit dan Sinar UV untuk Fotodegradasi Kandungan Zat Organik dan Warna pada Air Gambut. 1–7.
Kane, S. N., Mishra, A. & Dutta, A. K. (2016). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). IOP Conf. Series: Materials Science and Engineering, 188, 1–7. https://doi.org/10.1088/1742-6596/755/1/011001
Kanhere, P. & Chen, Z. (2014). A Review on Visible Light Active Perovskite-Based Photocatalysts. Molecules19, 19995–20022. https://doi.org/10.3390/molecules191219995
Kim, J. K., Jang, D. G., Campos, L. C., Jung, Y. W., Kim, J. H. & Joo, J. C. (2016). Synergistic Removal of Humic Acid in Water by Coupling Adsorption and Photocatalytic Degradation Using TiO₂/Coconut Shell Powder Composite. Journal of Nanomaterials, 16, 1–10. https://doi.org/10.1155/2016/7109015
Kumar, A., Schuerings, C., Kumar, S., Kumar, A., & Krishnan, V. (2018). Perovskite-structured CaTiO₃ coupled with g-C₃N₄ as a heterojunction photocatalyst for organic pollutant degradation. Beilstein Journal of Nanotechnology, 9(1), 671–685. https://dx.doi.org/10.3762/bjnano.9.62
Kumar, A. A., Rajini, A., & Venkatathri, N. (2017). Synthesis and characterization of magnetically separable porous titanium silicate nanocomposite catalyst for environmental applications. Materials Today: Proceedings, 4(1), 19–24. https://doi.org/10.1016/j.matpr.2017.01.188
Lavand, A. B. & Malghe, Y. S. (2015). Synthesis, Characterization, and Visible Light Photocatalytic Activity of Nanosized Carbon Doped Zinc Oxide. International Journal of Photochemistry, 2015, 1–9.
Li, F. F., Liu, D. R., Gao, G. M., Xue, B. & Jiang, Y. S. (2015). Improved visible-light photocatalytic activity of NaTaO₃ with perovskite-like structure via sulfur anion doping. Applied Catalysis B: Environmental, 166–167, 104–111. https://doi.org/10.1016/j.apcatb.2014.10.049
Li, Y., Yao, S., Wen, W., Xue, L. & Yan, Y. (2010). Sol-Gel Combustion Synthesis and Visible-Light-Driven Photocatalytic Property of Perovskite LaNiO₃. Journal of Alloys and Compounds, 491(1–2), 560–564. https://doi.org/10.1016/j.jallcom.2009.10.269
Liao, G., He, W. & He, Y. (2019). Investigation of Microstructure and Photocatalytic Performance of a Modified Zeolite Supported Nanocrystal TiO₂ Composite. Catalysts, 9(502), 1–13. https://doi.org/10.3390/catal9060502
Liu, Y., Ding, S., Xu, J., Zhang, H., Yang, S., Duan, X., Sun, H. & Wang, S. (2017). Preparation of a P-n Heterojunction BiFeO₃@TiO₂ Photocatalyst with a Core-Shell Structure for Visible-Light Photocatalytic Degradation. Cuihua Xuebao/Chinese Journal of Catalysis, 38(6), 1052–1062. https://doi.org/10.1016/S1872-2067(17)62845-6
Maleki, A., Safari, M., Shahmoradi, B., Zandsalimi, Y., Daraei, H., & Gharibi, F. (2015). Photocatalytic degradation of humic substances in aqueous using Cu-doped ZnO nanoparticles under natural sunlight irradiation. Environmental Science and Pollution Research International, 22(21), 16875–16880. https://dx.doi.org/10.1007/s11356-015-4915-7
Nurherdiana, S. D., Etriana, R., Iqbal, R. M., Utomo, W. P. & Fansuri, H. (2019). Effect of the sintering process on the morphology and mechanical properties of La0.6Sr0.4Co0.2Fe0.8O3-δ asymmetric flat membranes prepared by the phase inversion method. Ceramics - Silikaty, 63(3). https://doi.org/10.13168/cs.2019.0025
Nurherdiana, S.D., Nikmatin, S., Iqbal, R. M., Mutya, S. S., Wahyu, P. U., Syafsir, A., Nurlina & Hamzah, F. (2017). Preparation of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) by combination of mechanochemical and solid state reaction. In Key Engineering Materials: Vol. 744 744 KE. https://doi.org/10.4028/www.scientific.net/KEM.744.399
Peñas-Garzón, M., Gómez-Aviles, A., Bedia, J., Rodriguez, J. J., & Belver, C. (2019). Effect of activating Agent on the Properties of TiO₂/Activated Carbon Heterostuctures for Solar Photocatalytic Degradation of Acetaminophen. Materials, 12(378), 1–17. https://doi.org/10.3390/ma12030378
Peng, K., Fu, L., Yang, H. & Ouyang, J. (2016). Perovskite LaFeO₃/Montmorillonite Nanocomposites: Synthesis, Interface Characteristics and Enhanced Photocatalytic Activity. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep19723
Qodri, A. A. (2011). Dyes photodegradation Remazol Yellow FG with Composite Photocatalyst TiO2/SiO2. Department of Chemistry Faculty of Mathematics and Natural Sciences, University of March, Surakarta.
Ramadhani, S. U., Destiarti, L. & Syahbanu, I. (2017). Degradasi Bahan Organik Pada Air Gambut. JKK, 6(1), 50–56.
Rehansyah, M. A., HS, E. & Elystia, S. (2007). Penyisihan Zat Organik dan Warna Pada Air Gambut dengan Koagulan Alami Campuran (Biji Jagung, Biji Kelor, dan Biji Semangka). 23, 946–952. https://doi.org/10.13989/j.cnki.0517-6611.2015.10.011
Salavati-Niasari, M., Soofivand, F., Sobhani-Nasab, A., Shakouri-Arani, M., Yeganeh Faal, A. & Bagheri, S. (2016). Synthesis, Characterization, and Morphological Control of ZnTiO₃ Nanoparticles through Sol-Gel Processes and Its Photocatalyst Application. Advanced Powder Technology, 27(5), 2066–2075. https://doi.org/10.1016/j.apt.2016.07.018
Sucahya, T. N., Permatasari, N., & Nandiyanto, A. B. D. (2016). Review: Fotokatalis untuk Pengolahan Limbah Cair. Jurnal Integrasi Proses, 6(1), 1–15.
Suherman, D. & Sumawijaya, N. (2013). Menghilangkan Warna dan Zat Organik Air Gambut dengan Metode Koaagulasi-Flokulasi “Removing Colour and Organic Content of Peat Water Using Coagulation and Floculoation Method in Basaltic Condition.” Jurnal RISET Geologi Dan Pertambangan, 23(2), 125–138.
Surya, L., Sheilatin, Praja, P. V., Sepia, N. S. (2018). Preparation and Characterization of Titania/Bentonite Composite Application on the Degradation of Naphthol Blue Black Dye. Research Journal of Chemistry and Environment, 22 (Special issue II), 48–53.
Susandi, Oksana, & Arminudin, A. T. (2015). Analisis Sifat Fisika Tanah Gambut pada Hutan Gambut di Kecamatan Tambang Kabupaten Kampar Provinsi Riau. Jurnal Agroteknologi, 5(2), 23–28. https://dx.doi.org/10.24014/ja.v5i2.1351
Susanti, I., Iqbal, R. M., Rachman, R. A. & Pradana, T. A. (2021). Photocatalytic Activity and Kinetic Study of Methylene Blue Degradation using N-Doped TiO₂ with Zeolite-NaY. CHEESA: Chemical Engineering Research Articles, 4(2), 75. https://doi.org/10.25273/cheesa.v4i2.7646.75-81
Suwanto, N., Sari, A. A., Lingkungan, D. T., Teknik, F., Diponegoro, U., Tembalang, S. H., Kimia, P. P., Ilmu, L., Indonesia, P., Metrologi, P. P., Ilmu, L. & Indonesia, P. (2017). Penyisihan Fe, Warna, dan Kekeruhan Pada Air Gambut Menggunakan Metode Elektrokoagulasi. 6(2), 1–12.
Wicaksono, A. P., Prasetya, N. B. A., & Hastuti, R. (2013). Pengaruh Ion Logam Co²⁺ dan Cu²⁺ pada Proses Fotodegradasi Direct Blue 3R Menggunakan Fotokatalis Komposit ZnO-Karbon Aktif. Chem Info, 1(1), 316–327.
Xue, G., Liu, H., Chen, Q., Hills, C., Tyrer, M. & Innocent, F. (2011). Synergy between Surface Adsorption and Photocatalysis during Degradation of Humic Acid on TiO₂/Activated Carbon Composites. Journal of Hazardous Materials, 186, 765–772. https://doi.org/10.1016/j.jhazmat.2010.11.063
Yadav, A. A., Hunge, Y. M., Mathe, V. L. & Kulkarni, S. B. (2018). Photocatalytic Degradation of Salicylic Acid Using BaTiO₃ Photocatalyst under Ultraviolet Light Illumination. Journal of Materials Science: Materials in Electronics, 29(17), 15069–15073. https://doi.org/10.1007/s10854-018-9646-3
Zulfikar, M. A., Steiyanto, H., Wahyuningrum, H. & Mukti, R. R. (2014). Peat Water Treatment using Chitosan-Silica Composite as an Adsorbent. Int. J. Environ. Res., 8(3), 687–710.
Downloads
Published
Versions
- 2023-03-03 (2)
- 2022-06-01 (1)