Exploration Of Central Kalimantan Peatland Fungi As Antibacterial Agents Against Antibiotic-Resistant Staphylococcus Aureus and Salmonella Typhimurium

Authors

  • Hari Kusuma Program Studi Kedokteran Program Sarjana, Fakultas Kedokteran, Universitas Palangka Raya, Jl. Yos Sudarso, Palangka Raya, Kalimantan Tengah, Indonesia
  • Nawan Program Studi Kedokteran, Fakultas Kedokteran, Universitas Palangka Raya, Jl. Yos Sudarso, Palangka Raya, Kalimantan Tengah, Indonesia
  • Francisca Dian Alexandra Program Studi Kedokteran, Fakultas Kedokteran, Universitas Palangka Raya, Jl. Yos Sudarso, Palangka Raya, Kalimantan Tengah, Indonesia

DOI:

https://doi.org/10.37304/barigas.v3i3.21849

Keywords:

peat soil fungi, antibacterial, Staphylococcus aureus, Salmonella typhimurium, antibiotic resistance

Abstract

Pathogens such as Staphylococcus aureus and Salmonella typhimurium show increasing level of resistance to various antibiotics, thus encouraging efforts to find new antibacterial agents from natural sources, including peat soil fungi. This study aims to examine the characteristics and potential antibacterial activity of fungal isolates from peat soil in three different locations in Palangka Raya City, namely Kereng Bengkirai, Yos Sudarso Street, and the and the environmental area of Palangka Raya, University, against Staphylococcus aureus and Salmonella typhimurium bacteria. The research design used was a true experimental with a post-test only control group design model. Fungal isolates were obtained through inoculation and isolation from peat soil samples, then cultivated, extracted, and tested for antibacterial activity using the disk diffusion method. against two test bacteria. The results showed that fungal isolates from the third locations did not show growth inhibitory activity against Staphylococcus aureus or Salmonella typhimurium at the concentrations and testing method used. Fungal isolates from peat soil in Kereng Bengkirai Yos Sudarso street, and the Palangka Raya University area do not have antibacterial activity against Staphylococcus aureus and Salmonella typhimurium under the conditions and test methods applied

Keywords: peat soil fungi, antibacterial, Staphylococcus aureus, Salmonella typhimurium, antibiotic resistance.

Downloads

Download data is not yet available.
DOI: 10.37304/barigas.v3i3.21849 DOI URL: https://doi.org/10.37304/barigas.v3i3.21849
Views: 1 | Downloads: 1

References

Chevrette MG, Carlson CM, Ortega HE, et al. The Antimicrobial Potential of Streptomyces From Insect Microbiomes. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-08438-0

Pham J V, Yilma MA, Feliz A, et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.01404

Rao HCY, Rakshith D, Harini BP, Gurudatt DM, Satish S. Chemogenomics Driven Discovery of Endogenous Polyketide Anti-Infective Compounds From Endosymbiotic Emericella Variecolor CLB38 and Their RNA Secondary Structure Analysis. PLoS One. 2017;12(2):e0172848. doi:10.1371/journal.pone.0172848

Lamas A, Arteaga V, Regal P, et al. Antimicrobial Activity of Five Apitoxins From Apis Mellifera on Two Common Foodborne Pathogens. Antibiotics. 2020;9(7):367. doi:10.3390/antibiotics9070367

Álvarez‐Martínez FJ, Barrajón‐Catalán E, Micol V. Tackling Antibiotic Resistance With Compounds of Natural Origin: A Comprehensive Review. Biomedicines. 2020;8(10):405. doi:10.3390/biomedicines8100405

Humphries RM, Kircher S, Ferrell A, et al. The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical Laboratories: Report From the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J Clin Microbiol. 2018;56(8). doi:10.1128/jcm.00437-18

Carcione D, Siracusa C, Sulejmani A, et al. In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol Against Acinetobacter Baumannii Strains Recovered From Clinical Samples. Antibiotics. 2021;10(11):1309. doi:10.3390/antibiotics10111309

Berkow EL, Lockhart SR, Ostrosky‐Zeichner L. Antifungal Susceptibility Testing: Current Approaches. Clin Microbiol Rev. 2020;33(3). doi:10.1128/cmr.00069-19

Bovo F, Lazzarotto T, Ambretti S, Gaibani P. Comparison of Broth Microdilution, Disk Diffusion and Strip Test Methods for Cefiderocol Antimicrobial Susceptibility Testing on KPC-Producing Klebsiella Pneumoniae. Antibiotics. 2023;12(3):614. doi:10.3390/antibiotics12030614

Snyder ER, Savitske BJ, Credille BC. Concordance of Disk Diffusion, Broth Microdilution, and Whole‐genome Sequencing for Determination of in Vitro Antimicrobial Susceptibility of Mannheimia Haemolytica. J Vet Intern Med. 2020;34(5):2158-2168. doi:10.1111/jvim.15883

Eloff JN. Avoiding Pitfalls in Determining Antimicrobial Activity of Plant Extracts and Publishing the Results. BMC Complement Altern Med. 2019;19(1). doi:10.1186/s12906-019-2519-3

Güler Ş, Torul D, Bayrakdar SK, Tayyarcan EK, Çamsarı Ç, Boyacı İH. Evaluation of Antibacterial Efficacy of Lawsonia Inermis Linn (Henna) on Periodontal Pathogens Using Agar Well Diffusion and Broth Microdilution Methods: An in-Vitro Study. Biomedicine. 2023;13(3):25-30. doi:10.37796/2211-8039.1411

Andrade CP d., Lacerda CD, Valente R, et al. An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces Pinophilus CCM-UEA-F0414 and Penicillium Paxilli CCM-UEA-F0591. Antibiotics. 2025;14(8):756. doi:10.3390/antibiotics14080756

Priya R, Balachander S, Prabhakaran N. Optimization of Culture Conditions for the Production, Antifungal Activity and Characterization of Secondary Metabolites of &Lt;i>Trichoderma Longibrachiatum</I> J Biol Control. Published online 2023:131-144. doi:10.18311/jbc/2023/34700

Rahman KAMA, Rahim MSAA, Zarkasi KZ, Ibrahim D. Enhancement of Anti-Mrsa Potential Produced by an Endophytic Fungus Ceratobasidium Ramicola IBRLCM127 via Submerged Fermentation System. Malaysian J Med Heal Sci. 2023;19(s9):66-74. doi:10.47836/mjmhs.19.s9.10

Chalimah N, Soesanto L, Suharti WS. The Effect of Various pH Medium on the Secondary Metabollites Production From Trichoderma Harzianum T10 to Control Damping Off on Cucumber Seedlings. J Trop Hortic. 2020;3(2):65. doi:10.33089/jthort.v3i2.52

Penagos-Tabares F, Khiaosa‐ard R, Nagl V, et al. Mycotoxins, Phytoestrogens and Other Secondary Metabolites in Austrian Pastures: Occurrences, Contamination Levels and Implications of Geo-Climatic Factors. Toxins (Basel). 2021;13(7):460. doi:10.3390/toxins13070460

Kusai NORA, Ayob Z, Sasha NIK, Khairuddin K. Belowground fungal community .pdf. Published online 2024.

Rutledge PJ, Challis GL. Discovery of Microbial Natural Products by Activation of Silent Biosynthetic Gene Clusters. Nat Rev Microbiol. 2015;13(8):509-523. doi:10.1038/nrmicro3496

Qian W, Bai J, Yan D, et al. Genome Mining Combined Metabolic Shunting and OSMAC Strategy of an Endophytic Fungus Leads to the Production of Diverse Natural Products. Acta Pharm Sin B. 2021;11(2):572-587. doi:10.1016/j.apsb.2020.07.020

Gerke J, Köhler AM, Wennrich J, et al. Biosynthesis of Antibacterial Iron-Chelating Tropolones in Aspergillus Nidulans as Response to Glycopeptide-Producing Streptomycetes. Front Fungal Biol. 2022;2. doi:10.3389/ffunb.2021.777474

Bills GF, Gloer JB. Biologically Active Secondary Metabolites From the Fungi. Microbiol Spectr. 2016;4(6). doi:10.1128/microbiolspec.funk-0009-2016

Riedling O, Walker AS, Rokas A. Predicting Fungal Secondary Metabolite Activity From Biosynthetic Gene Cluster Data Using Machine Learning. Microbiol Spectr. 2024;12(2). doi:10.1128/spectrum.03400-23

Zhang F, Cao H, Si H, et al. FGCD: A Database of Fungal Gene Clusters Related to Secondary Metabolism. Database. 2024;2024. doi:10.1093/database/baae011

Okada BK, Seyedsayamdost MR. Antibiotic Dialogues: Induction of Silent Biosynthetic Gene Clusters by Exogenous Small Molecules. Fems Microbiol Rev. 2016;41(1):19-33. doi:10.1093/femsre/fuw035

Pillay LC, Nekati L, Makhwitine JP, Ndlovu SI. Epigenetic Activation of Silent Biosynthetic Gene Clusters in Endophytic Fungi Using Small Molecular Modifiers. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.815008

Li X, Garbeva P, Liu X, et al. Volatile‐mediated Antagonism of Soil Bacterial Communities Against Fungi. Environ Microbiol. 2019;22(3):1025-1035. doi:10.1111/1462-2920.14808

Khattak SU, Lutfullah G, Iqbal Z, et al. Aspergillus Flavus Originated Pure Compound as a Potential Antibacterial. BMC Microbiol. 2021;21(1). doi:10.1186/s12866-021-02371-3

Ratnaweera PB, Walgama RC, Jayasundera KU, et al. Antibacterial Activities of Endophytic Fungi Isolated From Six Sri Lankan Plants of the Family Cyperaceae. Bangladesh J Pharmacol. 2018;13(3):264-272. doi:10.3329/bjp.v13i3.36716

Ordóñez-Enireb E, Cucalón R V, Cárdenas DM, et al. Antarctic Fungi With Antibiotic Potential Isolated From Fort William Point, Antarctica. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-25911-x

Durán P, Barra PJ, Jorquera MA, et al. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front Bioeng Biotechnol. 2019;7. doi:10.3389/fbioe.2019.00028

Liu T, Huang Z, Gui X, et al. Multi-Omics Comparative Analysis of Streptomyces Mutants Obtained by Iterative Atmosphere and Room-Temperature Plasma Mutagenesis. Front Microbiol. 2021;11. doi:10.3389/fmicb.2020.630309

Hur JY, Jeong E, Kim YC, Lee SR. Strategies for Natural Product Discovery by Unlocking Cryptic Biosynthetic Gene Clusters in Fungi. Separations. 2023;10(6):333. doi:10.3390/separations10060333

Molina D, Angamarca E, Marinescu GC, Popescu RG, Tenea GN. Integrating Metabolomics and Genomics to Uncover Antimicrobial Compounds in Lactiplantibacillus Plantarum UTNGt2, a Cacao-Originating Probiotic From Ecuador. Antibiotics. 2025;14(2):123. doi:10.3390/antibiotics14020123

Clevenger KD, Bok JW, Ye R, et al. A Scalable Platform to Identify Fungal Secondary Metabolites and Their Gene Clusters. Nat Chem Biol. 2017;13(8):895-901. doi:10.1038/nchembio.2408

Downloads

Published

2025-12-12

How to Cite

Kusuma, H., Nawan, & Alexandra, F. D. (2025). Exploration Of Central Kalimantan Peatland Fungi As Antibacterial Agents Against Antibiotic-Resistant Staphylococcus Aureus and Salmonella Typhimurium. Barigas: Jurnal Riset Mahasiswa, 3(3). https://doi.org/10.37304/barigas.v3i3.21849