PENGARUH POWER SUPPLY TERHADAP KINERJA COOLER BOX MINI PADA SISTEM TERMOELEKTRIK PELTIER

Authors

  • Dibyo Setiawan Politeknik Negeri Bandung
  • Herbert Hasudungan Siahaan Universitas Mpu Tantular
  • Ferdiyansyah Ferdiyansyah Universitas Mpu Tantular
  • Cahyo Wibowo Universitas Mpu Tantular
  • Annisa Syafitri Kurniasetiawati Politeknik Negeri Bandung

DOI:

https://doi.org/10.37304/jptm.v6i1.13073

Keywords:

Power Supply, Cooler box, Thermoelectric, Peltier

Abstract

Indonesia has tropical climate characteristics, so it requires a cooling device where the utilization can be used as a room cooler and storage. Cooling machines generally use refrigerant working fluid in the compressor, refrigerant is a gas that is not environmentally friendly. So it is necessary to conduct alternative studies, that can replace refrigerant gas and simplify dimensions, weight, and convenience. This study was conducted to analyze the effect of applying a power supply on the performance of thermoelectric coolers. The experimental method applied 2 types of power supplies for thermoelectric Peltier coolers in cooling the mini cooler box space, then the 1400 ml capacity cooling room was given a varying volume of drinks. Analysis of the effect of using a power supply on the cooling performance of the mini cooler box on the thermoelectric Peltier system obtained the results that the time to reach the ambient temperature takes different times. The greater the load put into the box, the longer it takes to cool the drinking water. The greater the power supply ampere specifications, the better it is in accelerating the cooling rate but the power required is greater such as the application of the type of power supply with the type 20A.

Downloads

Download data is not yet available.

References

Abdulghani, Z. R. (2022). A novel experimental case study on optimization of Peltier air cooler using Taguchi method. Results in Engineering, 16(August), 100627. https://doi.org/10.1016/j.rineng.2022.100627

Afshari, F. (2020). Experimental Study for Comparing Heating and Cooling Performance of Thermoelectric Peltier. Politeknik Dergisi, 23(3), 889–894. https://doi.org/10.2339/politeknik.713600

Casano, G., & Piva, S. (2016). Peltier cells cooling system for switch mode power supply. THERMINIC 2016 - 22nd International Workshop on Thermal Investigations of ICs and Systems, 279–282. https://doi.org/10.1109/THERMINIC.2016.7749066

Casano, G., & Piva, S. (2017). Experimental investigation of a Peltier cells cooling system for a Switch-Mode Power Supply. Microelectronics Reliability, 79, 426–432. https://doi.org/10.1016/j.microrel.2017.05.042

Fairuz Remeli, M., Ezzah Bakaruddin, N., Shawal, S., Husin, H., Fauzi Othman, M., & Singh, B. (2020). Experimental study of a mini cooler by using Peltier thermoelectric cell. IOP Conference Series: Materials Science and Engineering, 788(1). https://doi.org/10.1088/1757-899X/788/1/012076

Hemmat Esfe, M., Esfandeh, S., & Toghraie, D. (2021). Numerical simulation of water production from humid air for Khuzestan province: Investigation of the Peltier effect (thermoelectric cooling system) on water production rate. Case Studies in Thermal Engineering, 28(September 2021), 101473. https://doi.org/10.1016/j.csite.2021.101473

Ivanov, Y., Yamauchi, K., Vyatkin, V., Watanabe, H., Inoue, N., Chikumoto, N., & Yamaguchi, S. (2018). Advantages of water-cooled Peltier current leads for HTS devices. Materials Today: Proceedings, 5(4), 10408–10412. https://doi.org/10.1016/j.matpr.2017.12.289

Kwan, T. H., Ikeuchi, D., & Yao, Q. (2019). Application of the Peltier sub-cooled trans-critical carbon dioxide heat pump system for water heating – Modelling and performance analysis. Energy Conversion and Management, 185(December 2018), 574–585. https://doi.org/10.1016/j.enconman.2019.01.104

Nimmagadda, L. A., Mahmud, R., & Sinha, S. (2021). Materials and Devices for On-Chip and Off-Chip Peltier Cooling: A Review. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(8), 1267–1281. https://doi.org/10.1109/TCPMT.2021.3095048

Pal, D., Ansari, A., & Behera, K. K. (2020). A Report on Design & Setup of Peltier Module Based Air Cooler. International Journal of Recent Technology and Engineering (IJRTE), 9(1), 2458–2463. https://doi.org/10.35940/ijrte.a3010.059120

Ryan Gig Julindra, Debora, & Wiyogo. (2021). Penerapan Model Pembelajaran Problem Solving Dalam Materi Perbaikan Sistem Pendingin. Steam Engineering, 3(1), 34–38. https://doi.org/10.37304/jptm.v3i1.1877

Sadighi Dizaji, H., Jafarmadar, S., Khalilarya, S., & Pourhedayat, S. (2019). A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation. Renewable Energy, 131, 308–317. https://doi.org/10.1016/j.renene.2018.07.056

Selvam, C., Manikandan, S., Kaushik, S. C., Lamba, R., & Harish, S. (2019). Transient performance of a Peltier super cooler under varied electric pulse conditions with phase change material. Energy Conversion and Management, 198(April), 111822. https://doi.org/10.1016/j.enconman.2019.111822

Shi, L., Eldin, S. M., Abdulghani, Z. R., Ali, E., Guo, W., Anqi, A. E., & Alkhamis, N. (2023). Economic-effectiveness experimental case study for instant cooling of drinking-water using Peltier module. Case Studies in Thermal Engineering, 42(January), 102710. https://doi.org/10.1016/j.csite.2023.102710

Slanina, Z., Uhlik, M., & Sladecek, V. (2018). Cooling Device with Peltier Element for Medical Applications. IFAC-PapersOnLine, 51(6), 54–59. https://doi.org/10.1016/j.ifacol.2018.07.129

Suryadi, A., Studi, P., Elektro, T., Indorama, P. E., Kuning, K., Firmansyah, A., Studi, P., Elektro, T., Indorama, P. E., & Kuning, K. (2020). Rancang Bangun Kulkas Mini Portable. 11(1), 11–22.

Tsutsui, M., Yokota, K., Hsu, W. L., Garoli, D., Daiguji, H., & Kawai, T. (2024). Peltier cooling for thermal management in nanofluidic devices. Device, 2(1), 100188. https://doi.org/10.1016/j.device.2023.100188

Wang, J., Cao, P., Li, X., Song, X., Zhao, C., & Zhu, L. (2019). Experimental study on the influence of Peltier effect on the output performance of thermoelectric generator and deviation of maximum power point. Energy Conversion and Management, 200(June), 112074. https://doi.org/10.1016/j.enconman.2019.112074

Yudiyanto, E., Adiwidodo, S., Takwim, R. N. A., Teknik, J., Politeknik, M., Malang, N., Sukarno, J., No, H., & Indonesia, M. (2020). P-31 Pemanfaatan Peltier Sebagai Sistem Pendinginan Untuk Medicine Cooler Box Utilization of Peltier As a Cooling System for Medicine Cooler Box. Snitt, 213–218. https://jurnal.poltekba.ac.id/index.php/prosiding/article/view/1022/626

Downloads

Published

2024-09-27

How to Cite

Setiawan, D., Siahaan, H. H., Ferdiyansyah, F., Wibowo, C., & Kurniasetiawati, A. S. (2024). PENGARUH POWER SUPPLY TERHADAP KINERJA COOLER BOX MINI PADA SISTEM TERMOELEKTRIK PELTIER. Steam Engineering, 6(1), 15–23. https://doi.org/10.37304/jptm.v6i1.13073